HomeHome Intuitionistic Logic Explorer
Theorem List (p. 121 of 133)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12001-12100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremstrslfv2d 12001 Deduction version of strslfv 12003. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.)
(𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)    &   (𝜑𝑆𝑉)    &   (𝜑 → Fun 𝑆)    &   (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)    &   (𝜑𝐶𝑊)       (𝜑𝐶 = (𝐸𝑆))
 
Theoremstrslfv2 12002 A variation on strslfv 12003 to avoid asserting that 𝑆 itself is a function, which involves sethood of all the ordered pair components of 𝑆. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.)
𝑆 ∈ V    &   Fun 𝑆    &   (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)    &   ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆       (𝐶𝑉𝐶 = (𝐸𝑆))
 
Theoremstrslfv 12003 Extract a structure component 𝐶 (such as the base set) from a structure 𝑆 with a component extractor 𝐸 (such as the base set extractor df-base 11965). By virtue of ndxslid 11984, this can be done without having to refer to the hard-coded numeric index of 𝐸. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Jim Kingdon, 30-Jan-2023.)
𝑆 Struct 𝑋    &   (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)    &   {⟨(𝐸‘ndx), 𝐶⟩} ⊆ 𝑆       (𝐶𝑉𝐶 = (𝐸𝑆))
 
Theoremstrslfv3 12004 Variant on strslfv 12003 for large structures. (Contributed by Mario Carneiro, 10-Jan-2017.) (Revised by Jim Kingdon, 30-Jan-2023.)
(𝜑𝑈 = 𝑆)    &   𝑆 Struct 𝑋    &   (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)    &   {⟨(𝐸‘ndx), 𝐶⟩} ⊆ 𝑆    &   (𝜑𝐶𝑉)    &   𝐴 = (𝐸𝑈)       (𝜑𝐴 = 𝐶)
 
Theoremstrslssd 12005 Deduction version of strslss 12006. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 31-Jan-2023.)
(𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)    &   (𝜑𝑇𝑉)    &   (𝜑 → Fun 𝑇)    &   (𝜑𝑆𝑇)    &   (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)       (𝜑 → (𝐸𝑇) = (𝐸𝑆))
 
Theoremstrslss 12006 Propagate component extraction to a structure 𝑇 from a subset structure 𝑆. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Jim Kingdon, 31-Jan-2023.)
𝑇 ∈ V    &   Fun 𝑇    &   𝑆𝑇    &   (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)    &   ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆       (𝐸𝑇) = (𝐸𝑆)
 
Theoremstrsl0 12007 All components of the empty set are empty sets. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 31-Jan-2023.)
(𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)       ∅ = (𝐸‘∅)
 
Theorembase0 12008 The base set of the empty structure. (Contributed by David A. Wheeler, 7-Jul-2016.)
∅ = (Base‘∅)
 
Theoremsetsslid 12009 Value of the structure replacement function at a replaced index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2023.)
(𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)       ((𝑊𝐴𝐶𝑉) → 𝐶 = (𝐸‘(𝑊 sSet ⟨(𝐸‘ndx), 𝐶⟩)))
 
Theoremsetsslnid 12010 Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2023.)
(𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)    &   (𝐸‘ndx) ≠ 𝐷    &   𝐷 ∈ ℕ       ((𝑊𝐴𝐶𝑉) → (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)))
 
Theorembaseval 12011 Value of the base set extractor. (Normally it is preferred to work with (Base‘ndx) rather than the hard-coded 1 in order to make structure theorems portable. This is an example of how to obtain it when needed.) (New usage is discouraged.) (Contributed by NM, 4-Sep-2011.)
𝐾 ∈ V       (Base‘𝐾) = (𝐾‘1)
 
Theorembaseid 12012 Utility theorem: index-independent form of df-base 11965. (Contributed by NM, 20-Oct-2012.)
Base = Slot (Base‘ndx)
 
Theorembasendx 12013 Index value of the base set extractor. (Normally it is preferred to work with (Base‘ndx) rather than the hard-coded 1 in order to make structure theorems portable. This is an example of how to obtain it when needed.) (New usage is discouraged.) (Contributed by Mario Carneiro, 2-Aug-2013.)
(Base‘ndx) = 1
 
Theorembasendxnn 12014 The index value of the base set extractor is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 23-Sep-2020.)
(Base‘ndx) ∈ ℕ
 
Theorembaseslid 12015 The base set extractor is a slot. (Contributed by Jim Kingdon, 31-Jan-2023.)
(Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ)
 
Theorembasfn 12016 The base set extractor is a function on V. (Contributed by Stefan O'Rear, 8-Jul-2015.)
Base Fn V
 
Theoremreldmress 12017 The structure restriction is a proper operator, so it can be used with ovprc1 5807. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Rel dom ↾s
 
Theoremressid2 12018 General behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Jim Kingdon, 26-Jan-2023.)
𝑅 = (𝑊s 𝐴)    &   𝐵 = (Base‘𝑊)       ((𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑅 = 𝑊)
 
Theoremressval2 12019 Value of nontrivial structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
𝑅 = (𝑊s 𝐴)    &   𝐵 = (Base‘𝑊)       ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑅 = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
 
Theoremressid 12020 Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
𝐵 = (Base‘𝑊)       (𝑊𝑋 → (𝑊s 𝐵) = 𝑊)
 
6.1.2  Slot definitions
 
Syntaxcplusg 12021 Extend class notation with group (addition) operation.
class +g
 
Syntaxcmulr 12022 Extend class notation with ring multiplication.
class .r
 
Syntaxcstv 12023 Extend class notation with involution.
class *𝑟
 
Syntaxcsca 12024 Extend class notation with scalar field.
class Scalar
 
Syntaxcvsca 12025 Extend class notation with scalar product.
class ·𝑠
 
Syntaxcip 12026 Extend class notation with Hermitian form (inner product).
class ·𝑖
 
Syntaxcts 12027 Extend class notation with the topology component of a topological space.
class TopSet
 
Syntaxcple 12028 Extend class notation with "less than or equal to" for posets.
class le
 
Syntaxcoc 12029 Extend class notation with the class of orthocomplementation extractors.
class oc
 
Syntaxcds 12030 Extend class notation with the metric space distance function.
class dist
 
Syntaxcunif 12031 Extend class notation with the uniform structure.
class UnifSet
 
Syntaxchom 12032 Extend class notation with the hom-set structure.
class Hom
 
Syntaxcco 12033 Extend class notation with the composition operation.
class comp
 
Definitiondf-plusg 12034 Define group operation. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
+g = Slot 2
 
Definitiondf-mulr 12035 Define ring multiplication. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
.r = Slot 3
 
Definitiondf-starv 12036 Define the involution function of a *-ring. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
*𝑟 = Slot 4
 
Definitiondf-sca 12037 Define scalar field component of a vector space 𝑣. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
Scalar = Slot 5
 
Definitiondf-vsca 12038 Define scalar product. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
·𝑠 = Slot 6
 
Definitiondf-ip 12039 Define Hermitian form (inner product). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
·𝑖 = Slot 8
 
Definitiondf-tset 12040 Define the topology component of a topological space (structure). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
TopSet = Slot 9
 
Definitiondf-ple 12041 Define "less than or equal to" ordering extractor for posets and related structures. We use 10 for the index to avoid conflict with 1 through 9 used for other purposes. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.)
le = Slot 10
 
Definitiondf-ocomp 12042 Define the orthocomplementation extractor for posets and related structures. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
oc = Slot 11
 
Definitiondf-ds 12043 Define the distance function component of a metric space (structure). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
dist = Slot 12
 
Definitiondf-unif 12044 Define the uniform structure component of a uniform space. (Contributed by Mario Carneiro, 14-Aug-2015.)
UnifSet = Slot 13
 
Definitiondf-hom 12045 Define the hom-set component of a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hom = Slot 14
 
Definitiondf-cco 12046 Define the composition operation of a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
comp = Slot 15
 
Theoremstrleund 12047 Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
(𝜑𝐹 Struct ⟨𝐴, 𝐵⟩)    &   (𝜑𝐺 Struct ⟨𝐶, 𝐷⟩)    &   (𝜑𝐵 < 𝐶)       (𝜑 → (𝐹𝐺) Struct ⟨𝐴, 𝐷⟩)
 
Theoremstrleun 12048 Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.)
𝐹 Struct ⟨𝐴, 𝐵    &   𝐺 Struct ⟨𝐶, 𝐷    &   𝐵 < 𝐶       (𝐹𝐺) Struct ⟨𝐴, 𝐷
 
Theoremstrle1g 12049 Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
𝐼 ∈ ℕ    &   𝐴 = 𝐼       (𝑋𝑉 → {⟨𝐴, 𝑋⟩} Struct ⟨𝐼, 𝐼⟩)
 
Theoremstrle2g 12050 Make a structure from a pair. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
𝐼 ∈ ℕ    &   𝐴 = 𝐼    &   𝐼 < 𝐽    &   𝐽 ∈ ℕ    &   𝐵 = 𝐽       ((𝑋𝑉𝑌𝑊) → {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩} Struct ⟨𝐼, 𝐽⟩)
 
Theoremstrle3g 12051 Make a structure from a triple. (Contributed by Mario Carneiro, 29-Aug-2015.)
𝐼 ∈ ℕ    &   𝐴 = 𝐼    &   𝐼 < 𝐽    &   𝐽 ∈ ℕ    &   𝐵 = 𝐽    &   𝐽 < 𝐾    &   𝐾 ∈ ℕ    &   𝐶 = 𝐾       ((𝑋𝑉𝑌𝑊𝑍𝑃) → {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩, ⟨𝐶, 𝑍⟩} Struct ⟨𝐼, 𝐾⟩)
 
Theoremplusgndx 12052 Index value of the df-plusg 12034 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
(+g‘ndx) = 2
 
Theoremplusgid 12053 Utility theorem: index-independent form of df-plusg 12034. (Contributed by NM, 20-Oct-2012.)
+g = Slot (+g‘ndx)
 
Theoremplusgslid 12054 Slot property of +g. (Contributed by Jim Kingdon, 3-Feb-2023.)
(+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
 
Theoremopelstrsl 12055 The slot of a structure which contains an ordered pair for that slot. (Contributed by Jim Kingdon, 5-Feb-2023.)
(𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)    &   (𝜑𝑆 Struct 𝑋)    &   (𝜑𝑉𝑌)    &   (𝜑 → ⟨(𝐸‘ndx), 𝑉⟩ ∈ 𝑆)       (𝜑𝑉 = (𝐸𝑆))
 
Theoremopelstrbas 12056 The base set of a structure with a base set. (Contributed by AV, 10-Nov-2021.)
(𝜑𝑆 Struct 𝑋)    &   (𝜑𝑉𝑌)    &   (𝜑 → ⟨(Base‘ndx), 𝑉⟩ ∈ 𝑆)       (𝜑𝑉 = (Base‘𝑆))
 
Theorem1strstrg 12057 A constructed one-slot structure. (Contributed by AV, 27-Mar-2020.) (Revised by Jim Kingdon, 28-Jan-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩}       (𝐵𝑉𝐺 Struct ⟨1, 1⟩)
 
Theorem1strbas 12058 The base set of a constructed one-slot structure. (Contributed by AV, 27-Mar-2020.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩}       (𝐵𝑉𝐵 = (Base‘𝐺))
 
Theorem2strstrg 12059 A constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩}    &   𝐸 = Slot 𝑁    &   1 < 𝑁    &   𝑁 ∈ ℕ       ((𝐵𝑉+𝑊) → 𝐺 Struct ⟨1, 𝑁⟩)
 
Theorem2strbasg 12060 The base set of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩}    &   𝐸 = Slot 𝑁    &   1 < 𝑁    &   𝑁 ∈ ℕ       ((𝐵𝑉+𝑊) → 𝐵 = (Base‘𝐺))
 
Theorem2stropg 12061 The other slot of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 28-Jan-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(𝐸‘ndx), + ⟩}    &   𝐸 = Slot 𝑁    &   1 < 𝑁    &   𝑁 ∈ ℕ       ((𝐵𝑉+𝑊) → + = (𝐸𝐺))
 
Theorem2strstr1g 12062 A constructed two-slot structure. Version of 2strstrg 12059 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩}    &   (Base‘ndx) < 𝑁    &   𝑁 ∈ ℕ       ((𝐵𝑉+𝑊) → 𝐺 Struct ⟨(Base‘ndx), 𝑁⟩)
 
Theorem2strbas1g 12063 The base set of a constructed two-slot structure. Version of 2strbasg 12060 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩}    &   (Base‘ndx) < 𝑁    &   𝑁 ∈ ℕ       ((𝐵𝑉+𝑊) → 𝐵 = (Base‘𝐺))
 
Theorem2strop1g 12064 The other slot of a constructed two-slot structure. Version of 2stropg 12061 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 2-Feb-2023.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩}    &   (Base‘ndx) < 𝑁    &   𝑁 ∈ ℕ    &   𝐸 = Slot 𝑁       ((𝐵𝑉+𝑊) → + = (𝐸𝐺))
 
Theorembasendxnplusgndx 12065 The slot for the base set is not the slot for the group operation in an extensible structure. (Contributed by AV, 14-Nov-2021.)
(Base‘ndx) ≠ (+g‘ndx)
 
Theoremgrpstrg 12066 A constructed group is a structure on 1...2. (Contributed by Mario Carneiro, 28-Sep-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩}       ((𝐵𝑉+𝑊) → 𝐺 Struct ⟨1, 2⟩)
 
Theoremgrpbaseg 12067 The base set of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩}       ((𝐵𝑉+𝑊) → 𝐵 = (Base‘𝐺))
 
Theoremgrpplusgg 12068 The operation of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩}       ((𝐵𝑉+𝑊) → + = (+g𝐺))
 
Theoremmulrndx 12069 Index value of the df-mulr 12035 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
(.r‘ndx) = 3
 
Theoremmulrid 12070 Utility theorem: index-independent form of df-mulr 12035. (Contributed by Mario Carneiro, 8-Jun-2013.)
.r = Slot (.r‘ndx)
 
Theoremmulrslid 12071 Slot property of .r. (Contributed by Jim Kingdon, 3-Feb-2023.)
(.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
 
Theoremplusgndxnmulrndx 12072 The slot for the group (addition) operation is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.)
(+g‘ndx) ≠ (.r‘ndx)
 
Theorembasendxnmulrndx 12073 The slot for the base set is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.)
(Base‘ndx) ≠ (.r‘ndx)
 
Theoremrngstrg 12074 A constructed ring is a structure. (Contributed by Mario Carneiro, 28-Sep-2013.) (Revised by Jim Kingdon, 3-Feb-2023.)
𝑅 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}       ((𝐵𝑉+𝑊·𝑋) → 𝑅 Struct ⟨1, 3⟩)
 
Theoremrngbaseg 12075 The base set of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 3-Feb-2023.)
𝑅 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}       ((𝐵𝑉+𝑊·𝑋) → 𝐵 = (Base‘𝑅))
 
Theoremrngplusgg 12076 The additive operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝑅 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}       ((𝐵𝑉+𝑊·𝑋) → + = (+g𝑅))
 
Theoremrngmulrg 12077 The multiplicative operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝑅 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩}       ((𝐵𝑉+𝑊·𝑋) → · = (.r𝑅))
 
Theoremstarvndx 12078 Index value of the df-starv 12036 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
(*𝑟‘ndx) = 4
 
Theoremstarvid 12079 Utility theorem: index-independent form of df-starv 12036. (Contributed by Mario Carneiro, 6-Oct-2013.)
*𝑟 = Slot (*𝑟‘ndx)
 
Theoremstarvslid 12080 Slot property of *𝑟. (Contributed by Jim Kingdon, 4-Feb-2023.)
(*𝑟 = Slot (*𝑟‘ndx) ∧ (*𝑟‘ndx) ∈ ℕ)
 
Theoremsrngstrd 12081 A constructed star ring is a structure. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
𝑅 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑·𝑋)    &   (𝜑𝑌)       (𝜑𝑅 Struct ⟨1, 4⟩)
 
Theoremsrngbased 12082 The base set of a constructed star ring. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
𝑅 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑·𝑋)    &   (𝜑𝑌)       (𝜑𝐵 = (Base‘𝑅))
 
Theoremsrngplusgd 12083 The addition operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) (Revised by Jim Kingdon, 5-Feb-2023.)
𝑅 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑·𝑋)    &   (𝜑𝑌)       (𝜑+ = (+g𝑅))
 
Theoremsrngmulrd 12084 The multiplication operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.)
𝑅 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑·𝑋)    &   (𝜑𝑌)       (𝜑· = (.r𝑅))
 
Theoremsrnginvld 12085 The involution function of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.)
𝑅 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑·𝑋)    &   (𝜑𝑌)       (𝜑 = (*𝑟𝑅))
 
Theoremscandx 12086 Index value of the df-sca 12037 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
(Scalar‘ndx) = 5
 
Theoremscaid 12087 Utility theorem: index-independent form of scalar df-sca 12037. (Contributed by Mario Carneiro, 19-Jun-2014.)
Scalar = Slot (Scalar‘ndx)
 
Theoremscaslid 12088 Slot property of Scalar. (Contributed by Jim Kingdon, 5-Feb-2023.)
(Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
 
Theoremvscandx 12089 Index value of the df-vsca 12038 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
( ·𝑠 ‘ndx) = 6
 
Theoremvscaid 12090 Utility theorem: index-independent form of scalar product df-vsca 12038. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
·𝑠 = Slot ( ·𝑠 ‘ndx)
 
Theoremvscaslid 12091 Slot property of ·𝑠. (Contributed by Jim Kingdon, 5-Feb-2023.)
( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
 
Theoremlmodstrd 12092 A constructed left module or left vector space is a structure. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑋)    &   (𝜑𝐹𝑌)    &   (𝜑·𝑍)       (𝜑𝑊 Struct ⟨1, 6⟩)
 
Theoremlmodbased 12093 The base set of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑋)    &   (𝜑𝐹𝑌)    &   (𝜑·𝑍)       (𝜑𝐵 = (Base‘𝑊))
 
Theoremlmodplusgd 12094 The additive operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑋)    &   (𝜑𝐹𝑌)    &   (𝜑·𝑍)       (𝜑+ = (+g𝑊))
 
Theoremlmodscad 12095 The set of scalars of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑋)    &   (𝜑𝐹𝑌)    &   (𝜑·𝑍)       (𝜑𝐹 = (Scalar‘𝑊))
 
Theoremlmodvscad 12096 The scalar product operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 7-Feb-2023.)
𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑋)    &   (𝜑𝐹𝑌)    &   (𝜑·𝑍)       (𝜑· = ( ·𝑠𝑊))
 
Theoremipndx 12097 Index value of the df-ip 12039 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
(·𝑖‘ndx) = 8
 
Theoremipid 12098 Utility theorem: index-independent form of df-ip 12039. (Contributed by Mario Carneiro, 6-Oct-2013.)
·𝑖 = Slot (·𝑖‘ndx)
 
Theoremipslid 12099 Slot property of ·𝑖. (Contributed by Jim Kingdon, 7-Feb-2023.)
(·𝑖 = Slot (·𝑖‘ndx) ∧ (·𝑖‘ndx) ∈ ℕ)
 
Theoremipsstrd 12100 A constructed inner product space is a structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
𝐴 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), 𝐼⟩})    &   (𝜑𝐵𝑉)    &   (𝜑+𝑊)    &   (𝜑×𝑋)    &   (𝜑𝑆𝑌)    &   (𝜑·𝑄)    &   (𝜑𝐼𝑍)       (𝜑𝐴 Struct ⟨1, 8⟩)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13250
  Copyright terms: Public domain < Previous  Next >