| Intuitionistic Logic Explorer Theorem List (p. 121 of 159) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | muldvds2 12001 | If a product divides an integer, so does one of its factors. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∥ 𝑁 → 𝑀 ∥ 𝑁)) | ||
| Theorem | dvdscmul 12002 | Multiplication by a constant maintains the divides relation. Theorem 1.1(d) in [ApostolNT] p. 14 (multiplication property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∥ 𝑁 → (𝐾 · 𝑀) ∥ (𝐾 · 𝑁))) | ||
| Theorem | dvdsmulc 12003 | Multiplication by a constant maintains the divides relation. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∥ 𝑁 → (𝑀 · 𝐾) ∥ (𝑁 · 𝐾))) | ||
| Theorem | dvdscmulr 12004 | Cancellation law for the divides relation. Theorem 1.1(e) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝐾 · 𝑀) ∥ (𝐾 · 𝑁) ↔ 𝑀 ∥ 𝑁)) | ||
| Theorem | dvdsmulcr 12005 | Cancellation law for the divides relation. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝑀 · 𝐾) ∥ (𝑁 · 𝐾) ↔ 𝑀 ∥ 𝑁)) | ||
| Theorem | summodnegmod 12006 | The sum of two integers modulo a positive integer equals zero iff the first of the two integers equals the negative of the other integer modulo the positive integer. (Contributed by AV, 25-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 𝐵) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = (-𝐵 mod 𝑁))) | ||
| Theorem | modmulconst 12007 | Constant multiplication in a modulo operation, see theorem 5.3 in [ApostolNT] p. 108. (Contributed by AV, 21-Jul-2021.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ ((𝐶 · 𝐴) mod (𝐶 · 𝑀)) = ((𝐶 · 𝐵) mod (𝐶 · 𝑀)))) | ||
| Theorem | dvds2ln 12008 | If an integer divides each of two other integers, it divides any linear combination of them. Theorem 1.1(c) in [ApostolNT] p. 14 (linearity property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ ((𝐼 · 𝑀) + (𝐽 · 𝑁)))) | ||
| Theorem | dvds2add 12009 | If an integer divides each of two other integers, it divides their sum. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ (𝑀 + 𝑁))) | ||
| Theorem | dvds2sub 12010 | If an integer divides each of two other integers, it divides their difference. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ (𝑀 − 𝑁))) | ||
| Theorem | dvds2subd 12011 | Deduction form of dvds2sub 12010. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∥ 𝑀) & ⊢ (𝜑 → 𝐾 ∥ 𝑁) ⇒ ⊢ (𝜑 → 𝐾 ∥ (𝑀 − 𝑁)) | ||
| Theorem | dvdstr 12012 | The divides relation is transitive. Theorem 1.1(b) in [ApostolNT] p. 14 (transitive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝑀 ∥ 𝑁) → 𝐾 ∥ 𝑁)) | ||
| Theorem | dvds2addd 12013 | Deduction form of dvds2add 12009. (Contributed by SN, 21-Aug-2024.) |
| ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∥ 𝑀) & ⊢ (𝜑 → 𝐾 ∥ 𝑁) ⇒ ⊢ (𝜑 → 𝐾 ∥ (𝑀 + 𝑁)) | ||
| Theorem | dvdstrd 12014 | The divides relation is transitive, a deduction version of dvdstr 12012. (Contributed by metakunt, 12-May-2024.) |
| ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∥ 𝑀) & ⊢ (𝜑 → 𝑀 ∥ 𝑁) ⇒ ⊢ (𝜑 → 𝐾 ∥ 𝑁) | ||
| Theorem | dvdsmultr1 12015 | If an integer divides another, it divides a multiple of it. (Contributed by Paul Chapman, 17-Nov-2012.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∥ 𝑀 → 𝐾 ∥ (𝑀 · 𝑁))) | ||
| Theorem | dvdsmultr1d 12016 | Natural deduction form of dvdsmultr1 12015. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∥ 𝑀) ⇒ ⊢ (𝜑 → 𝐾 ∥ (𝑀 · 𝑁)) | ||
| Theorem | dvdsmultr2 12017 | If an integer divides another, it divides a multiple of it. (Contributed by Paul Chapman, 17-Nov-2012.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∥ 𝑁 → 𝐾 ∥ (𝑀 · 𝑁))) | ||
| Theorem | ordvdsmul 12018 | If an integer divides either of two others, it divides their product. (Contributed by Paul Chapman, 17-Nov-2012.) (Proof shortened by Mario Carneiro, 17-Jul-2014.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∨ 𝐾 ∥ 𝑁) → 𝐾 ∥ (𝑀 · 𝑁))) | ||
| Theorem | dvdssub2 12019 | If an integer divides a difference, then it divides one term iff it divides the other. (Contributed by Mario Carneiro, 13-Jul-2014.) |
| ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ (𝑀 − 𝑁)) → (𝐾 ∥ 𝑀 ↔ 𝐾 ∥ 𝑁)) | ||
| Theorem | dvdsadd 12020 | An integer divides another iff it divides their sum. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 13-Jul-2014.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ (𝑀 + 𝑁))) | ||
| Theorem | dvdsaddr 12021 | An integer divides another iff it divides their sum. (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ (𝑁 + 𝑀))) | ||
| Theorem | dvdssub 12022 | An integer divides another iff it divides their difference. (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ (𝑀 − 𝑁))) | ||
| Theorem | dvdssubr 12023 | An integer divides another iff it divides their difference. (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ (𝑁 − 𝑀))) | ||
| Theorem | dvdsadd2b 12024 | Adding a multiple of the base does not affect divisibility. (Contributed by Stefan O'Rear, 23-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) → (𝐴 ∥ 𝐵 ↔ 𝐴 ∥ (𝐶 + 𝐵))) | ||
| Theorem | dvdsaddre2b 12025 | Adding a multiple of the base does not affect divisibility. Variant of dvdsadd2b 12024 only requiring 𝐵 to be a real number (not necessarily an integer). (Contributed by AV, 19-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) → (𝐴 ∥ 𝐵 ↔ 𝐴 ∥ (𝐶 + 𝐵))) | ||
| Theorem | fsumdvds 12026* | If every term in a sum is divisible by 𝑁, then so is the sum. (Contributed by Mario Carneiro, 17-Jan-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑁 ∥ 𝐵) ⇒ ⊢ (𝜑 → 𝑁 ∥ Σ𝑘 ∈ 𝐴 𝐵) | ||
| Theorem | dvdslelemd 12027 | Lemma for dvdsle 12028. (Contributed by Jim Kingdon, 8-Nov-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑁 < 𝑀) ⇒ ⊢ (𝜑 → (𝐾 · 𝑀) ≠ 𝑁) | ||
| Theorem | dvdsle 12028 | The divisors of a positive integer are bounded by it. The proof does not use /. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 → 𝑀 ≤ 𝑁)) | ||
| Theorem | dvdsleabs 12029 | The divisors of a nonzero integer are bounded by its absolute value. Theorem 1.1(i) in [ApostolNT] p. 14 (comparison property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) (Proof shortened by Fan Zheng, 3-Jul-2016.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑀 ∥ 𝑁 → 𝑀 ≤ (abs‘𝑁))) | ||
| Theorem | dvdsleabs2 12030 | Transfer divisibility to an order constraint on absolute values. (Contributed by Stefan O'Rear, 24-Sep-2014.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑀 ∥ 𝑁 → (abs‘𝑀) ≤ (abs‘𝑁))) | ||
| Theorem | dvdsabseq 12031 | If two integers divide each other, they must be equal, up to a difference in sign. Theorem 1.1(j) in [ApostolNT] p. 14. (Contributed by Mario Carneiro, 30-May-2014.) (Revised by AV, 7-Aug-2021.) |
| ⊢ ((𝑀 ∥ 𝑁 ∧ 𝑁 ∥ 𝑀) → (abs‘𝑀) = (abs‘𝑁)) | ||
| Theorem | dvdseq 12032 | If two nonnegative integers divide each other, they must be equal. (Contributed by Mario Carneiro, 30-May-2014.) (Proof shortened by AV, 7-Aug-2021.) |
| ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 ∥ 𝑁 ∧ 𝑁 ∥ 𝑀)) → 𝑀 = 𝑁) | ||
| Theorem | divconjdvds 12033 | If a nonzero integer 𝑀 divides another integer 𝑁, the other integer 𝑁 divided by the nonzero integer 𝑀 (i.e. the divisor conjugate of 𝑁 to 𝑀) divides the other integer 𝑁. Theorem 1.1(k) in [ApostolNT] p. 14. (Contributed by AV, 7-Aug-2021.) |
| ⊢ ((𝑀 ∥ 𝑁 ∧ 𝑀 ≠ 0) → (𝑁 / 𝑀) ∥ 𝑁) | ||
| Theorem | dvdsdivcl 12034* | The complement of a divisor of 𝑁 is also a divisor of 𝑁. (Contributed by Mario Carneiro, 2-Jul-2015.) (Proof shortened by AV, 9-Aug-2021.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (𝑁 / 𝐴) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) | ||
| Theorem | dvdsflip 12035* | An involution of the divisors of a number. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 13-May-2016.) |
| ⊢ 𝐴 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} & ⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ (𝑁 / 𝑦)) ⇒ ⊢ (𝑁 ∈ ℕ → 𝐹:𝐴–1-1-onto→𝐴) | ||
| Theorem | dvdsssfz1 12036* | The set of divisors of a number is a subset of a finite set. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ (𝐴 ∈ ℕ → {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴} ⊆ (1...𝐴)) | ||
| Theorem | dvds1 12037 | The only nonnegative integer that divides 1 is 1. (Contributed by Mario Carneiro, 2-Jul-2015.) |
| ⊢ (𝑀 ∈ ℕ0 → (𝑀 ∥ 1 ↔ 𝑀 = 1)) | ||
| Theorem | alzdvds 12038* | Only 0 is divisible by all integers. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (𝑁 ∈ ℤ → (∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ↔ 𝑁 = 0)) | ||
| Theorem | dvdsext 12039* | Poset extensionality for division. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥))) | ||
| Theorem | fzm1ndvds 12040 | No number between 1 and 𝑀 − 1 divides 𝑀. (Contributed by Mario Carneiro, 24-Jan-2015.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → ¬ 𝑀 ∥ 𝑁) | ||
| Theorem | fzo0dvdseq 12041 | Zero is the only one of the first 𝐴 nonnegative integers that is divisible by 𝐴. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ (𝐵 ∈ (0..^𝐴) → (𝐴 ∥ 𝐵 ↔ 𝐵 = 0)) | ||
| Theorem | fzocongeq 12042 | Two different elements of a half-open range are not congruent mod its length. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷 − 𝐶) ∥ (𝐴 − 𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | addmodlteqALT 12043 | Two nonnegative integers less than the modulus are equal iff the sums of these integer with another integer are equal modulo the modulus. Shorter proof of addmodlteq 10509 based on the "divides" relation. (Contributed by AV, 14-Mar-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼 + 𝑆) mod 𝑁) = ((𝐽 + 𝑆) mod 𝑁) ↔ 𝐼 = 𝐽)) | ||
| Theorem | dvdsfac 12044 | A positive integer divides any greater factorial. (Contributed by Paul Chapman, 28-Nov-2012.) |
| ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝐾 ∥ (!‘𝑁)) | ||
| Theorem | dvdsexp 12045 | A power divides a power with a greater exponent. (Contributed by Mario Carneiro, 23-Feb-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ∥ (𝐴↑𝑁)) | ||
| Theorem | dvdsmod 12046 | Any number 𝐾 whose mod base 𝑁 is divisible by a divisor 𝑃 of the base is also divisible by 𝑃. This means that primes will also be relatively prime to the base when reduced mod 𝑁 for any base. (Contributed by Mario Carneiro, 13-Mar-2014.) |
| ⊢ (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃 ∥ 𝑁) → (𝑃 ∥ (𝐾 mod 𝑁) ↔ 𝑃 ∥ 𝐾)) | ||
| Theorem | mulmoddvds 12047 | If an integer is divisible by a positive integer, the product of this integer with another integer modulo the positive integer is 0. (Contributed by Alexander van der Vekens, 30-Aug-2018.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑁 ∥ 𝐴 → ((𝐴 · 𝐵) mod 𝑁) = 0)) | ||
| Theorem | 3dvds 12048* | A rule for divisibility by 3 of a number written in base 10. This is Metamath 100 proof #85. (Contributed by Mario Carneiro, 14-Jul-2014.) (Revised by Mario Carneiro, 17-Jan-2015.) (Revised by AV, 8-Sep-2021.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(0...𝑁)⟶ℤ) → (3 ∥ Σ𝑘 ∈ (0...𝑁)((𝐹‘𝑘) · (;10↑𝑘)) ↔ 3 ∥ Σ𝑘 ∈ (0...𝑁)(𝐹‘𝑘))) | ||
| Theorem | 3dvdsdec 12049 | A decimal number is divisible by three iff the sum of its two "digits" is divisible by three. The term "digits" in its narrow sense is only correct if 𝐴 and 𝐵 actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers 𝐴 and 𝐵, especially if 𝐴 is itself a decimal number, e.g., 𝐴 = ;𝐶𝐷. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 ⇒ ⊢ (3 ∥ ;𝐴𝐵 ↔ 3 ∥ (𝐴 + 𝐵)) | ||
| Theorem | 3dvds2dec 12050 | A decimal number is divisible by three iff the sum of its three "digits" is divisible by three. The term "digits" in its narrow sense is only correct if 𝐴, 𝐵 and 𝐶 actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers 𝐴, 𝐵 and 𝐶. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 ⇒ ⊢ (3 ∥ ;;𝐴𝐵𝐶 ↔ 3 ∥ ((𝐴 + 𝐵) + 𝐶)) | ||
The set ℤ of integers can be partitioned into the set of even numbers and the set of odd numbers, see zeo4 12054. Instead of defining new class variables Even and Odd to represent these sets, we use the idiom 2 ∥ 𝑁 to say that "𝑁 is even" (which implies 𝑁 ∈ ℤ, see evenelz 12051) and ¬ 2 ∥ 𝑁 to say that "𝑁 is odd" (under the assumption that 𝑁 ∈ ℤ). The previously proven theorems about even and odd numbers, like zneo 9446, zeo 9450, zeo2 9451, etc. use different representations, which are equivalent with the representations using the divides relation, see evend2 12073 and oddp1d2 12074. The corresponding theorems are zeneo 12055, zeo3 12052 and zeo4 12054. | ||
| Theorem | evenelz 12051 | An even number is an integer. This follows immediately from the reverse closure of the divides relation, see dvdszrcl 11976. (Contributed by AV, 22-Jun-2021.) |
| ⊢ (2 ∥ 𝑁 → 𝑁 ∈ ℤ) | ||
| Theorem | zeo3 12052 | An integer is even or odd. (Contributed by AV, 17-Jun-2021.) |
| ⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ ¬ 2 ∥ 𝑁)) | ||
| Theorem | zeoxor 12053 | An integer is even or odd but not both. (Contributed by Jim Kingdon, 10-Nov-2021.) |
| ⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ⊻ ¬ 2 ∥ 𝑁)) | ||
| Theorem | zeo4 12054 | An integer is even or odd but not both. (Contributed by AV, 17-Jun-2021.) |
| ⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ ¬ ¬ 2 ∥ 𝑁)) | ||
| Theorem | zeneo 12055 | No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. This variant of zneo 9446 follows immediately from the fact that a contradiction implies anything, see pm2.21i 647. (Contributed by AV, 22-Jun-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵) → 𝐴 ≠ 𝐵)) | ||
| Theorem | odd2np1lem 12056* | Lemma for odd2np1 12057. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)) | ||
| Theorem | odd2np1 12057* | An integer is odd iff it is one plus twice another integer. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)) | ||
| Theorem | even2n 12058* | An integer is even iff it is twice another integer. (Contributed by AV, 25-Jun-2020.) |
| ⊢ (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁) | ||
| Theorem | oddm1even 12059 | An integer is odd iff its predecessor is even. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 − 1))) | ||
| Theorem | oddp1even 12060 | An integer is odd iff its successor is even. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 + 1))) | ||
| Theorem | oexpneg 12061 | The exponential of the negative of a number, when the exponent is odd. (Contributed by Mario Carneiro, 25-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (-𝐴↑𝑁) = -(𝐴↑𝑁)) | ||
| Theorem | mod2eq0even 12062 | An integer is 0 modulo 2 iff it is even (i.e. divisible by 2), see example 2 in [ApostolNT] p. 107. (Contributed by AV, 21-Jul-2021.) |
| ⊢ (𝑁 ∈ ℤ → ((𝑁 mod 2) = 0 ↔ 2 ∥ 𝑁)) | ||
| Theorem | mod2eq1n2dvds 12063 | An integer is 1 modulo 2 iff it is odd (i.e. not divisible by 2), see example 3 in [ApostolNT] p. 107. (Contributed by AV, 24-May-2020.) |
| ⊢ (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁)) | ||
| Theorem | oddnn02np1 12064* | A nonnegative integer is odd iff it is one plus twice another nonnegative integer. (Contributed by AV, 19-Jun-2021.) |
| ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁)) | ||
| Theorem | oddge22np1 12065* | An integer greater than one is odd iff it is one plus twice a positive integer. (Contributed by AV, 16-Aug-2021.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ ((2 · 𝑛) + 1) = 𝑁)) | ||
| Theorem | evennn02n 12066* | A nonnegative integer is even iff it is twice another nonnegative integer. (Contributed by AV, 12-Aug-2021.) |
| ⊢ (𝑁 ∈ ℕ0 → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 (2 · 𝑛) = 𝑁)) | ||
| Theorem | evennn2n 12067* | A positive integer is even iff it is twice another positive integer. (Contributed by AV, 12-Aug-2021.) |
| ⊢ (𝑁 ∈ ℕ → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ (2 · 𝑛) = 𝑁)) | ||
| Theorem | 2tp1odd 12068 | A number which is twice an integer increased by 1 is odd. (Contributed by AV, 16-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 = ((2 · 𝐴) + 1)) → ¬ 2 ∥ 𝐵) | ||
| Theorem | mulsucdiv2z 12069 | An integer multiplied with its successor divided by 2 yields an integer, i.e. an integer multiplied with its successor is even. (Contributed by AV, 19-Jul-2021.) |
| ⊢ (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ) | ||
| Theorem | sqoddm1div8z 12070 | A squared odd number minus 1 divided by 8 is an integer. (Contributed by AV, 19-Jul-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (((𝑁↑2) − 1) / 8) ∈ ℤ) | ||
| Theorem | 2teven 12071 | A number which is twice an integer is even. (Contributed by AV, 16-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 = (2 · 𝐴)) → 2 ∥ 𝐵) | ||
| Theorem | zeo5 12072 | An integer is either even or odd, version of zeo3 12052 avoiding the negation of the representation of an odd number. (Proposed by BJ, 21-Jun-2021.) (Contributed by AV, 26-Jun-2020.) |
| ⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ 2 ∥ (𝑁 + 1))) | ||
| Theorem | evend2 12073 | An integer is even iff its quotient with 2 is an integer. This is a representation of even numbers without using the divides relation, see zeo 9450 and zeo2 9451. (Contributed by AV, 22-Jun-2021.) |
| ⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ (𝑁 / 2) ∈ ℤ)) | ||
| Theorem | oddp1d2 12074 | An integer is odd iff its successor divided by 2 is an integer. This is a representation of odd numbers without using the divides relation, see zeo 9450 and zeo2 9451. (Contributed by AV, 22-Jun-2021.) |
| ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ)) | ||
| Theorem | zob 12075 | Alternate characterizations of an odd number. (Contributed by AV, 7-Jun-2020.) |
| ⊢ (𝑁 ∈ ℤ → (((𝑁 + 1) / 2) ∈ ℤ ↔ ((𝑁 − 1) / 2) ∈ ℤ)) | ||
| Theorem | oddm1d2 12076 | An integer is odd iff its predecessor divided by 2 is an integer. This is another representation of odd numbers without using the divides relation. (Contributed by AV, 18-Jun-2021.) (Proof shortened by AV, 22-Jun-2021.) |
| ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 − 1) / 2) ∈ ℤ)) | ||
| Theorem | ltoddhalfle 12077 | An integer is less than half of an odd number iff it is less than or equal to the half of the predecessor of the odd number (which is an even number). (Contributed by AV, 29-Jun-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ∧ 𝑀 ∈ ℤ) → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2))) | ||
| Theorem | halfleoddlt 12078 | An integer is greater than half of an odd number iff it is greater than or equal to the half of the odd number. (Contributed by AV, 1-Jul-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ∧ 𝑀 ∈ ℤ) → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀)) | ||
| Theorem | opoe 12079 | The sum of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵)) → 2 ∥ (𝐴 + 𝐵)) | ||
| Theorem | omoe 12080 | The difference of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵)) → 2 ∥ (𝐴 − 𝐵)) | ||
| Theorem | opeo 12081 | The sum of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → ¬ 2 ∥ (𝐴 + 𝐵)) | ||
| Theorem | omeo 12082 | The difference of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → ¬ 2 ∥ (𝐴 − 𝐵)) | ||
| Theorem | m1expe 12083 | Exponentiation of -1 by an even power. Variant of m1expeven 10697. (Contributed by AV, 25-Jun-2021.) |
| ⊢ (2 ∥ 𝑁 → (-1↑𝑁) = 1) | ||
| Theorem | m1expo 12084 | Exponentiation of -1 by an odd power. (Contributed by AV, 26-Jun-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1) | ||
| Theorem | m1exp1 12085 | Exponentiation of negative one is one iff the exponent is even. (Contributed by AV, 20-Jun-2021.) |
| ⊢ (𝑁 ∈ ℤ → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁)) | ||
| Theorem | nn0enne 12086 | A positive integer is an even nonnegative integer iff it is an even positive integer. (Contributed by AV, 30-May-2020.) |
| ⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ0 ↔ (𝑁 / 2) ∈ ℕ)) | ||
| Theorem | nn0ehalf 12087 | The half of an even nonnegative integer is a nonnegative integer. (Contributed by AV, 22-Jun-2020.) (Revised by AV, 28-Jun-2021.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ∥ 𝑁) → (𝑁 / 2) ∈ ℕ0) | ||
| Theorem | nnehalf 12088 | The half of an even positive integer is a positive integer. (Contributed by AV, 28-Jun-2021.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) → (𝑁 / 2) ∈ ℕ) | ||
| Theorem | nn0o1gt2 12089 | An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁)) | ||
| Theorem | nno 12090 | An alternate characterization of an odd integer greater than 1. (Contributed by AV, 2-Jun-2020.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ) | ||
| Theorem | nn0o 12091 | An alternate characterization of an odd nonnegative integer. (Contributed by AV, 28-May-2020.) (Proof shortened by AV, 2-Jun-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0) | ||
| Theorem | nn0ob 12092 | Alternate characterizations of an odd nonnegative integer. (Contributed by AV, 4-Jun-2020.) |
| ⊢ (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ ((𝑁 − 1) / 2) ∈ ℕ0)) | ||
| Theorem | nn0oddm1d2 12093 | A positive integer is odd iff its predecessor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.) |
| ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ((𝑁 − 1) / 2) ∈ ℕ0)) | ||
| Theorem | nnoddm1d2 12094 | A positive integer is odd iff its successor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.) |
| ⊢ (𝑁 ∈ ℕ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℕ)) | ||
| Theorem | z0even 12095 | 0 is even. (Contributed by AV, 11-Feb-2020.) (Revised by AV, 23-Jun-2021.) |
| ⊢ 2 ∥ 0 | ||
| Theorem | n2dvds1 12096 | 2 does not divide 1 (common case). That means 1 is odd. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ ¬ 2 ∥ 1 | ||
| Theorem | n2dvdsm1 12097 | 2 does not divide -1. That means -1 is odd. (Contributed by AV, 15-Aug-2021.) |
| ⊢ ¬ 2 ∥ -1 | ||
| Theorem | z2even 12098 | 2 is even. (Contributed by AV, 12-Feb-2020.) (Revised by AV, 23-Jun-2021.) |
| ⊢ 2 ∥ 2 | ||
| Theorem | n2dvds3 12099 | 2 does not divide 3, i.e. 3 is an odd number. (Contributed by AV, 28-Feb-2021.) |
| ⊢ ¬ 2 ∥ 3 | ||
| Theorem | z4even 12100 | 4 is an even number. (Contributed by AV, 23-Jul-2020.) (Revised by AV, 4-Jul-2021.) |
| ⊢ 2 ∥ 4 | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |