Theorem List for Intuitionistic Logic Explorer - 12001-12100 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Syntax | ctan 12001 |
Extend class notation to include the tangent function.
|
| class tan |
| |
| Syntax | cpi 12002 |
Extend class notation to include the constant pi, π
= 3.14159....
|
| class π |
| |
| Definition | df-ef 12003* |
Define the exponential function. Its value at the complex number 𝐴
is (exp‘𝐴) and is called the "exponential
of 𝐴"; see
efval 12016. (Contributed by NM, 14-Mar-2005.)
|
| ⊢ exp = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ ℕ0
((𝑥↑𝑘) / (!‘𝑘))) |
| |
| Definition | df-e 12004 |
Define Euler's constant e = 2.71828.... (Contributed
by NM,
14-Mar-2005.)
|
| ⊢ e = (exp‘1) |
| |
| Definition | df-sin 12005 |
Define the sine function. (Contributed by NM, 14-Mar-2005.)
|
| ⊢ sin = (𝑥 ∈ ℂ ↦ (((exp‘(i
· 𝑥)) −
(exp‘(-i · 𝑥))) / (2 · i))) |
| |
| Definition | df-cos 12006 |
Define the cosine function. (Contributed by NM, 14-Mar-2005.)
|
| ⊢ cos = (𝑥 ∈ ℂ ↦ (((exp‘(i
· 𝑥)) +
(exp‘(-i · 𝑥))) / 2)) |
| |
| Definition | df-tan 12007 |
Define the tangent function. We define it this way for cmpt 4109,
which
requires the form (𝑥 ∈ 𝐴 ↦ 𝐵). (Contributed by Mario
Carneiro, 14-Mar-2014.)
|
| ⊢ tan = (𝑥 ∈ (◡cos “ (ℂ ∖ {0})) ↦
((sin‘𝑥) /
(cos‘𝑥))) |
| |
| Definition | df-pi 12008 |
Define the constant pi, π = 3.14159..., which is the
smallest
positive number whose sine is zero. Definition of π in [Gleason]
p. 311. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by AV,
14-Sep-2020.)
|
| ⊢ π = inf((ℝ+ ∩ (◡sin “ {0})), ℝ, <
) |
| |
| Theorem | eftcl 12009 |
Closure of a term in the series expansion of the exponential function.
(Contributed by Paul Chapman, 11-Sep-2007.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → ((𝐴↑𝐾) / (!‘𝐾)) ∈ ℂ) |
| |
| Theorem | reeftcl 12010 |
The terms of the series expansion of the exponential function at a real
number are real. (Contributed by Paul Chapman, 15-Jan-2008.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐾 ∈ ℕ0) → ((𝐴↑𝐾) / (!‘𝐾)) ∈ ℝ) |
| |
| Theorem | eftabs 12011 |
The absolute value of a term in the series expansion of the exponential
function. (Contributed by Paul Chapman, 23-Nov-2007.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) →
(abs‘((𝐴↑𝐾) / (!‘𝐾))) = (((abs‘𝐴)↑𝐾) / (!‘𝐾))) |
| |
| Theorem | eftvalcn 12012* |
The value of a term in the series expansion of the exponential function.
(Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon,
8-Dec-2022.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐹‘𝑁) = ((𝐴↑𝑁) / (!‘𝑁))) |
| |
| Theorem | efcllemp 12013* |
Lemma for efcl 12019. The series that defines the exponential
function
converges. The ratio test cvgratgt0 11888 is used to show convergence.
(Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon,
8-Dec-2022.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → (2 ·
(abs‘𝐴)) < 𝐾)
⇒ ⊢ (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ ) |
| |
| Theorem | efcllem 12014* |
Lemma for efcl 12019. The series that defines the exponential
function
converges. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon,
8-Dec-2022.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝
) |
| |
| Theorem | ef0lem 12015* |
The series defining the exponential function converges in the (trivial)
case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.)
(Revised by Mario Carneiro, 28-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1) |
| |
| Theorem | efval 12016* |
Value of the exponential function. (Contributed by NM, 8-Jan-2006.)
(Revised by Mario Carneiro, 10-Nov-2013.)
|
| ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘))) |
| |
| Theorem | esum 12017 |
Value of Euler's constant e = 2.71828.... (Contributed
by Steve
Rodriguez, 5-Mar-2006.)
|
| ⊢ e = Σ𝑘 ∈ ℕ0 (1 /
(!‘𝑘)) |
| |
| Theorem | eff 12018 |
Domain and codomain of the exponential function. (Contributed by Paul
Chapman, 22-Oct-2007.) (Proof shortened by Mario Carneiro,
28-Apr-2014.)
|
| ⊢ exp:ℂ⟶ℂ |
| |
| Theorem | efcl 12019 |
Closure law for the exponential function. (Contributed by NM,
8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.)
|
| ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ∈
ℂ) |
| |
| Theorem | efval2 12020* |
Value of the exponential function. (Contributed by Mario Carneiro,
29-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹‘𝑘)) |
| |
| Theorem | efcvg 12021* |
The series that defines the exponential function converges to it.
(Contributed by NM, 9-Jan-2006.) (Revised by Mario Carneiro,
28-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → seq0( + , 𝐹) ⇝ (exp‘𝐴)) |
| |
| Theorem | efcvgfsum 12022* |
Exponential function convergence in terms of a sequence of partial
finite sums. (Contributed by NM, 10-Jan-2006.) (Revised by Mario
Carneiro, 28-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦
Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘))) ⇒ ⊢ (𝐴 ∈ ℂ → 𝐹 ⇝ (exp‘𝐴)) |
| |
| Theorem | reefcl 12023 |
The exponential function is real if its argument is real. (Contributed
by NM, 27-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.)
|
| ⊢ (𝐴 ∈ ℝ → (exp‘𝐴) ∈
ℝ) |
| |
| Theorem | reefcld 12024 |
The exponential function is real if its argument is real. (Contributed
by Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → (exp‘𝐴) ∈ ℝ) |
| |
| Theorem | ere 12025 |
Euler's constant e = 2.71828... is a real number.
(Contributed by
NM, 19-Mar-2005.) (Revised by Steve Rodriguez, 8-Mar-2006.)
|
| ⊢ e ∈ ℝ |
| |
| Theorem | ege2le3 12026 |
Euler's constant e = 2.71828... is bounded by 2 and 3.
(Contributed by NM, 20-Mar-2005.) (Proof shortened by Mario Carneiro,
28-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (2 · ((1 /
2)↑𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ (1 /
(!‘𝑛))) ⇒ ⊢ (2 ≤ e ∧ e ≤
3) |
| |
| Theorem | ef0 12027 |
Value of the exponential function at 0. Equation 2 of [Gleason] p. 308.
(Contributed by Steve Rodriguez, 27-Jun-2006.) (Revised by Mario
Carneiro, 28-Apr-2014.)
|
| ⊢ (exp‘0) = 1 |
| |
| Theorem | efcj 12028 |
The exponential of a complex conjugate. Equation 3 of [Gleason] p. 308.
(Contributed by NM, 29-Apr-2005.) (Revised by Mario Carneiro,
28-Apr-2014.)
|
| ⊢ (𝐴 ∈ ℂ →
(exp‘(∗‘𝐴)) = (∗‘(exp‘𝐴))) |
| |
| Theorem | efaddlem 12029* |
Lemma for efadd 12030 (exponential function addition law).
(Contributed by
Mario Carneiro, 29-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ ((𝐵↑𝑛) / (!‘𝑛))) & ⊢ 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝐴 + 𝐵)↑𝑛) / (!‘𝑛))) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵))) |
| |
| Theorem | efadd 12030 |
Sum of exponents law for exponential function. (Contributed by NM,
10-Jan-2006.) (Proof shortened by Mario Carneiro, 29-Apr-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵))) |
| |
| Theorem | efcan 12031 |
Cancellation law for exponential function. Equation 27 of [Rudin] p. 164.
(Contributed by NM, 13-Jan-2006.)
|
| ⊢ (𝐴 ∈ ℂ → ((exp‘𝐴) · (exp‘-𝐴)) = 1) |
| |
| Theorem | efap0 12032 |
The exponential of a complex number is apart from zero. (Contributed by
Jim Kingdon, 12-Dec-2022.)
|
| ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) # 0) |
| |
| Theorem | efne0 12033 |
The exponential of a complex number is nonzero. Corollary 15-4.3 of
[Gleason] p. 309. The same result also
holds with not equal replaced by
apart, as seen at efap0 12032 (which will be more useful in most
contexts).
(Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro,
29-Apr-2014.)
|
| ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ≠ 0) |
| |
| Theorem | efneg 12034 |
The exponential of the opposite is the inverse of the exponential.
(Contributed by Mario Carneiro, 10-May-2014.)
|
| ⊢ (𝐴 ∈ ℂ → (exp‘-𝐴) = (1 / (exp‘𝐴))) |
| |
| Theorem | eff2 12035 |
The exponential function maps the complex numbers to the nonzero complex
numbers. (Contributed by Paul Chapman, 16-Apr-2008.)
|
| ⊢ exp:ℂ⟶(ℂ ∖
{0}) |
| |
| Theorem | efsub 12036 |
Difference of exponents law for exponential function. (Contributed by
Steve Rodriguez, 25-Nov-2007.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 − 𝐵)) = ((exp‘𝐴) / (exp‘𝐵))) |
| |
| Theorem | efexp 12037 |
The exponential of an integer power. Corollary 15-4.4 of [Gleason]
p. 309, restricted to integers. (Contributed by NM, 13-Jan-2006.)
(Revised by Mario Carneiro, 5-Jun-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · 𝐴)) = ((exp‘𝐴)↑𝑁)) |
| |
| Theorem | efzval 12038 |
Value of the exponential function for integers. Special case of efval 12016.
Equation 30 of [Rudin] p. 164. (Contributed
by Steve Rodriguez,
15-Sep-2006.) (Revised by Mario Carneiro, 5-Jun-2014.)
|
| ⊢ (𝑁 ∈ ℤ → (exp‘𝑁) = (e↑𝑁)) |
| |
| Theorem | efgt0 12039 |
The exponential of a real number is greater than 0. (Contributed by Paul
Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
|
| ⊢ (𝐴 ∈ ℝ → 0 <
(exp‘𝐴)) |
| |
| Theorem | rpefcl 12040 |
The exponential of a real number is a positive real. (Contributed by
Mario Carneiro, 10-Nov-2013.)
|
| ⊢ (𝐴 ∈ ℝ → (exp‘𝐴) ∈
ℝ+) |
| |
| Theorem | rpefcld 12041 |
The exponential of a real number is a positive real. (Contributed by
Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → (exp‘𝐴) ∈
ℝ+) |
| |
| Theorem | eftlcvg 12042* |
The tail series of the exponential function are convergent.
(Contributed by Mario Carneiro, 29-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) →
seq𝑀( + , 𝐹) ∈ dom ⇝
) |
| |
| Theorem | eftlcl 12043* |
Closure of the sum of an infinite tail of the series defining the
exponential function. (Contributed by Paul Chapman, 17-Jan-2008.)
(Revised by Mario Carneiro, 30-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) →
Σ𝑘 ∈
(ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℂ) |
| |
| Theorem | reeftlcl 12044* |
Closure of the sum of an infinite tail of the series defining the
exponential function. (Contributed by Paul Chapman, 17-Jan-2008.)
(Revised by Mario Carneiro, 30-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) →
Σ𝑘 ∈
(ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℝ) |
| |
| Theorem | eftlub 12045* |
An upper bound on the absolute value of the infinite tail of the series
expansion of the exponential function on the closed unit disk.
(Contributed by Paul Chapman, 19-Jan-2008.) (Proof shortened by Mario
Carneiro, 29-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦
(((abs‘𝐴)↑𝑛) / (!‘𝑛))) & ⊢ 𝐻 = (𝑛 ∈ ℕ0 ↦
((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑛))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) ≤
1) ⇒ ⊢ (𝜑 → (abs‘Σ𝑘 ∈
(ℤ≥‘𝑀)(𝐹‘𝑘)) ≤ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀)))) |
| |
| Theorem | efsep 12046* |
Separate out the next term of the power series expansion of the
exponential function. The last hypothesis allows the separated terms to
be rearranged as desired. (Contributed by Paul Chapman, 23-Nov-2007.)
(Revised by Mario Carneiro, 29-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ 𝑁 = (𝑀 + 1) & ⊢ 𝑀 ∈
ℕ0
& ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (exp‘𝐴) = (𝐵 + Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘))) & ⊢ (𝜑 → (𝐵 + ((𝐴↑𝑀) / (!‘𝑀))) = 𝐷) ⇒ ⊢ (𝜑 → (exp‘𝐴) = (𝐷 + Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘))) |
| |
| Theorem | effsumlt 12047* |
The partial sums of the series expansion of the exponential function at
a positive real number are bounded by the value of the function.
(Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro,
29-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈
ℕ0) ⇒ ⊢ (𝜑 → (seq0( + , 𝐹)‘𝑁) < (exp‘𝐴)) |
| |
| Theorem | eft0val 12048 |
The value of the first term of the series expansion of the exponential
function is 1. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by
Mario Carneiro, 29-Apr-2014.)
|
| ⊢ (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) =
1) |
| |
| Theorem | ef4p 12049* |
Separate out the first four terms of the infinite series expansion of
the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.)
(Revised by Mario Carneiro, 29-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) + Σ𝑘 ∈
(ℤ≥‘4)(𝐹‘𝑘))) |
| |
| Theorem | efgt1p2 12050 |
The exponential of a positive real number is greater than the sum of the
first three terms of the series expansion. (Contributed by Mario
Carneiro, 15-Sep-2014.)
|
| ⊢ (𝐴 ∈ ℝ+ → ((1 +
𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴)) |
| |
| Theorem | efgt1p 12051 |
The exponential of a positive real number is greater than 1 plus that
number. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by
Mario Carneiro, 30-Apr-2014.)
|
| ⊢ (𝐴 ∈ ℝ+ → (1 +
𝐴) < (exp‘𝐴)) |
| |
| Theorem | efgt1 12052 |
The exponential of a positive real number is greater than 1.
(Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro,
30-Apr-2014.)
|
| ⊢ (𝐴 ∈ ℝ+ → 1 <
(exp‘𝐴)) |
| |
| Theorem | efltim 12053 |
The exponential function on the reals is strictly increasing.
(Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon,
20-Dec-2022.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → (exp‘𝐴) < (exp‘𝐵))) |
| |
| Theorem | reef11 12054 |
The exponential function on real numbers is one-to-one. (Contributed by
NM, 21-Aug-2008.) (Revised by Jim Kingdon, 20-Dec-2022.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘𝐴) = (exp‘𝐵) ↔ 𝐴 = 𝐵)) |
| |
| Theorem | reeff1 12055 |
The exponential function maps real arguments one-to-one to positive
reals. (Contributed by Steve Rodriguez, 25-Aug-2007.) (Revised by
Mario Carneiro, 10-Nov-2013.)
|
| ⊢ (exp ↾ ℝ):ℝ–1-1→ℝ+ |
| |
| Theorem | eflegeo 12056 |
The exponential function on the reals between 0 and 1 lies below the
comparable geometric series sum. (Contributed by Paul Chapman,
11-Sep-2007.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐴 < 1) ⇒ ⊢ (𝜑 → (exp‘𝐴) ≤ (1 / (1 − 𝐴))) |
| |
| Theorem | sinval 12057 |
Value of the sine function. (Contributed by NM, 14-Mar-2005.) (Revised
by Mario Carneiro, 10-Nov-2013.)
|
| ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i ·
𝐴)) − (exp‘(-i
· 𝐴))) / (2
· i))) |
| |
| Theorem | cosval 12058 |
Value of the cosine function. (Contributed by NM, 14-Mar-2005.)
(Revised by Mario Carneiro, 10-Nov-2013.)
|
| ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i ·
𝐴)) + (exp‘(-i
· 𝐴))) /
2)) |
| |
| Theorem | sinf 12059 |
Domain and codomain of the sine function. (Contributed by Paul Chapman,
22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
|
| ⊢ sin:ℂ⟶ℂ |
| |
| Theorem | cosf 12060 |
Domain and codomain of the cosine function. (Contributed by Paul Chapman,
22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
|
| ⊢ cos:ℂ⟶ℂ |
| |
| Theorem | sincl 12061 |
Closure of the sine function. (Contributed by NM, 28-Apr-2005.) (Revised
by Mario Carneiro, 30-Apr-2014.)
|
| ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈
ℂ) |
| |
| Theorem | coscl 12062 |
Closure of the cosine function with a complex argument. (Contributed by
NM, 28-Apr-2005.) (Revised by Mario Carneiro, 30-Apr-2014.)
|
| ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈
ℂ) |
| |
| Theorem | tanvalap 12063 |
Value of the tangent function. (Contributed by Mario Carneiro,
14-Mar-2014.) (Revised by Jim Kingdon, 21-Dec-2022.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴))) |
| |
| Theorem | tanclap 12064 |
The closure of the tangent function with a complex argument. (Contributed
by David A. Wheeler, 15-Mar-2014.) (Revised by Jim Kingdon,
21-Dec-2022.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) ∈
ℂ) |
| |
| Theorem | sincld 12065 |
Closure of the sine function. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (sin‘𝐴) ∈ ℂ) |
| |
| Theorem | coscld 12066 |
Closure of the cosine function. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (cos‘𝐴) ∈ ℂ) |
| |
| Theorem | tanclapd 12067 |
Closure of the tangent function. (Contributed by Mario Carneiro,
29-May-2016.) (Revised by Jim Kingdon, 22-Dec-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (cos‘𝐴) # 0)
⇒ ⊢ (𝜑 → (tan‘𝐴) ∈ ℂ) |
| |
| Theorem | tanval2ap 12068 |
Express the tangent function directly in terms of exp.
(Contributed
by Mario Carneiro, 25-Feb-2015.) (Revised by Jim Kingdon,
22-Dec-2022.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) = (((exp‘(i ·
𝐴)) − (exp‘(-i
· 𝐴))) / (i
· ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))) |
| |
| Theorem | tanval3ap 12069 |
Express the tangent function directly in terms of exp.
(Contributed
by Mario Carneiro, 25-Feb-2015.) (Revised by Jim Kingdon,
22-Dec-2022.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ ((exp‘(2
· (i · 𝐴)))
+ 1) # 0) → (tan‘𝐴) = (((exp‘(2 · (i ·
𝐴))) − 1) / (i
· ((exp‘(2 · (i · 𝐴))) + 1)))) |
| |
| Theorem | resinval 12070 |
The sine of a real number in terms of the exponential function.
(Contributed by NM, 30-Apr-2005.)
|
| ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) =
(ℑ‘(exp‘(i · 𝐴)))) |
| |
| Theorem | recosval 12071 |
The cosine of a real number in terms of the exponential function.
(Contributed by NM, 30-Apr-2005.)
|
| ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = (ℜ‘(exp‘(i
· 𝐴)))) |
| |
| Theorem | efi4p 12072* |
Separate out the first four terms of the infinite series expansion of
the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.)
(Revised by Mario Carneiro, 30-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → (exp‘(i
· 𝐴)) = (((1
− ((𝐴↑2) / 2))
+ (i · (𝐴 −
((𝐴↑3) / 6)))) +
Σ𝑘 ∈
(ℤ≥‘4)(𝐹‘𝑘))) |
| |
| Theorem | resin4p 12073* |
Separate out the first four terms of the infinite series expansion of
the sine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.)
(Revised by Mario Carneiro, 30-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) +
(ℑ‘Σ𝑘
∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
| |
| Theorem | recos4p 12074* |
Separate out the first four terms of the infinite series expansion of
the cosine of a real number. (Contributed by Paul Chapman,
19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = ((1 − ((𝐴↑2) / 2)) +
(ℜ‘Σ𝑘
∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
| |
| Theorem | resincl 12075 |
The sine of a real number is real. (Contributed by NM, 30-Apr-2005.)
|
| ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) ∈
ℝ) |
| |
| Theorem | recoscl 12076 |
The cosine of a real number is real. (Contributed by NM, 30-Apr-2005.)
|
| ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) ∈
ℝ) |
| |
| Theorem | retanclap 12077 |
The closure of the tangent function with a real argument. (Contributed by
David A. Wheeler, 15-Mar-2014.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) ∈
ℝ) |
| |
| Theorem | resincld 12078 |
Closure of the sine function. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → (sin‘𝐴) ∈ ℝ) |
| |
| Theorem | recoscld 12079 |
Closure of the cosine function. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → (cos‘𝐴) ∈ ℝ) |
| |
| Theorem | retanclapd 12080 |
Closure of the tangent function. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (cos‘𝐴) # 0)
⇒ ⊢ (𝜑 → (tan‘𝐴) ∈ ℝ) |
| |
| Theorem | sinneg 12081 |
The sine of a negative is the negative of the sine. (Contributed by NM,
30-Apr-2005.)
|
| ⊢ (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴)) |
| |
| Theorem | cosneg 12082 |
The cosines of a number and its negative are the same. (Contributed by
NM, 30-Apr-2005.)
|
| ⊢ (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴)) |
| |
| Theorem | tannegap 12083 |
The tangent of a negative is the negative of the tangent. (Contributed by
David A. Wheeler, 23-Mar-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘-𝐴) = -(tan‘𝐴)) |
| |
| Theorem | sin0 12084 |
Value of the sine function at 0. (Contributed by Steve Rodriguez,
14-Mar-2005.)
|
| ⊢ (sin‘0) = 0 |
| |
| Theorem | cos0 12085 |
Value of the cosine function at 0. (Contributed by NM, 30-Apr-2005.)
|
| ⊢ (cos‘0) = 1 |
| |
| Theorem | tan0 12086 |
The value of the tangent function at zero is zero. (Contributed by David
A. Wheeler, 16-Mar-2014.)
|
| ⊢ (tan‘0) = 0 |
| |
| Theorem | efival 12087 |
The exponential function in terms of sine and cosine. (Contributed by NM,
30-Apr-2005.)
|
| ⊢ (𝐴 ∈ ℂ → (exp‘(i
· 𝐴)) =
((cos‘𝐴) + (i
· (sin‘𝐴)))) |
| |
| Theorem | efmival 12088 |
The exponential function in terms of sine and cosine. (Contributed by NM,
14-Jan-2006.)
|
| ⊢ (𝐴 ∈ ℂ → (exp‘(-i
· 𝐴)) =
((cos‘𝐴) − (i
· (sin‘𝐴)))) |
| |
| Theorem | efeul 12089 |
Eulerian representation of the complex exponential. (Suggested by Jeff
Hankins, 3-Jul-2006.) (Contributed by NM, 4-Jul-2006.)
|
| ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) =
((exp‘(ℜ‘𝐴)) ·
((cos‘(ℑ‘𝐴)) + (i ·
(sin‘(ℑ‘𝐴)))))) |
| |
| Theorem | efieq 12090 |
The exponentials of two imaginary numbers are equal iff their sine and
cosine components are equal. (Contributed by Paul Chapman,
15-Mar-2008.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘(i
· 𝐴)) =
(exp‘(i · 𝐵))
↔ ((cos‘𝐴) =
(cos‘𝐵) ∧
(sin‘𝐴) =
(sin‘𝐵)))) |
| |
| Theorem | sinadd 12091 |
Addition formula for sine. Equation 14 of [Gleason] p. 310. (Contributed
by Steve Rodriguez, 10-Nov-2006.) (Revised by Mario Carneiro,
30-Apr-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(𝐴 + 𝐵)) = (((sin‘𝐴) · (cos‘𝐵)) + ((cos‘𝐴) · (sin‘𝐵)))) |
| |
| Theorem | cosadd 12092 |
Addition formula for cosine. Equation 15 of [Gleason] p. 310.
(Contributed by NM, 15-Jan-2006.) (Revised by Mario Carneiro,
30-Apr-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 + 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵)))) |
| |
| Theorem | tanaddaplem 12093 |
A useful intermediate step in tanaddap 12094 when showing that the addition of
tangents is well-defined. (Contributed by Mario Carneiro, 4-Apr-2015.)
(Revised by Jim Kingdon, 25-Dec-2022.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) →
((cos‘(𝐴 + 𝐵)) # 0 ↔ ((tan‘𝐴) · (tan‘𝐵)) # 1)) |
| |
| Theorem | tanaddap 12094 |
Addition formula for tangent. (Contributed by Mario Carneiro,
4-Apr-2015.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0 ∧ (cos‘(𝐴 + 𝐵)) # 0)) → (tan‘(𝐴 + 𝐵)) = (((tan‘𝐴) + (tan‘𝐵)) / (1 − ((tan‘𝐴) · (tan‘𝐵))))) |
| |
| Theorem | sinsub 12095 |
Sine of difference. (Contributed by Paul Chapman, 12-Oct-2007.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(𝐴 − 𝐵)) = (((sin‘𝐴) · (cos‘𝐵)) − ((cos‘𝐴) · (sin‘𝐵)))) |
| |
| Theorem | cossub 12096 |
Cosine of difference. (Contributed by Paul Chapman, 12-Oct-2007.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 − 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵)))) |
| |
| Theorem | addsin 12097 |
Sum of sines. (Contributed by Paul Chapman, 12-Oct-2007.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) + (sin‘𝐵)) = (2 ·
((sin‘((𝐴 + 𝐵) / 2)) ·
(cos‘((𝐴 −
𝐵) /
2))))) |
| |
| Theorem | subsin 12098 |
Difference of sines. (Contributed by Paul Chapman, 12-Oct-2007.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) − (sin‘𝐵)) = (2 ·
((cos‘((𝐴 + 𝐵) / 2)) ·
(sin‘((𝐴 −
𝐵) /
2))))) |
| |
| Theorem | sinmul 12099 |
Product of sines can be rewritten as half the difference of certain
cosines. This follows from cosadd 12092 and cossub 12096. (Contributed by David
A. Wheeler, 26-May-2015.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (sin‘𝐵)) = (((cos‘(𝐴 − 𝐵)) − (cos‘(𝐴 + 𝐵))) / 2)) |
| |
| Theorem | cosmul 12100 |
Product of cosines can be rewritten as half the sum of certain cosines.
This follows from cosadd 12092 and cossub 12096. (Contributed by David A.
Wheeler, 26-May-2015.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) · (cos‘𝐵)) = (((cos‘(𝐴 − 𝐵)) + (cos‘(𝐴 + 𝐵))) / 2)) |