HomeHome Intuitionistic Logic Explorer
Theorem List (p. 121 of 156)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12001-12100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
TheoremaddmodlteqALT 12001 Two nonnegative integers less than the modulus are equal iff the sums of these integer with another integer are equal modulo the modulus. Shorter proof of addmodlteq 10469 based on the "divides" relation. (Contributed by AV, 14-Mar-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼 + 𝑆) mod 𝑁) = ((𝐽 + 𝑆) mod 𝑁) ↔ 𝐼 = 𝐽))
 
Theoremdvdsfac 12002 A positive integer divides any greater factorial. (Contributed by Paul Chapman, 28-Nov-2012.)
((𝐾 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝐾)) → 𝐾 ∥ (!‘𝑁))
 
Theoremdvdsexp 12003 A power divides a power with a greater exponent. (Contributed by Mario Carneiro, 23-Feb-2014.)
((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ∥ (𝐴𝑁))
 
Theoremdvdsmod 12004 Any number 𝐾 whose mod base 𝑁 is divisible by a divisor 𝑃 of the base is also divisible by 𝑃. This means that primes will also be relatively prime to the base when reduced mod 𝑁 for any base. (Contributed by Mario Carneiro, 13-Mar-2014.)
(((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃𝑁) → (𝑃 ∥ (𝐾 mod 𝑁) ↔ 𝑃𝐾))
 
Theoremmulmoddvds 12005 If an integer is divisible by a positive integer, the product of this integer with another integer modulo the positive integer is 0. (Contributed by Alexander van der Vekens, 30-Aug-2018.)
((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑁𝐴 → ((𝐴 · 𝐵) mod 𝑁) = 0))
 
Theorem3dvdsdec 12006 A decimal number is divisible by three iff the sum of its two "digits" is divisible by three. The term "digits" in its narrow sense is only correct if 𝐴 and 𝐵 actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers 𝐴 and 𝐵, especially if 𝐴 is itself a decimal number, e.g., 𝐴 = 𝐶𝐷. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 8-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0       (3 ∥ 𝐴𝐵 ↔ 3 ∥ (𝐴 + 𝐵))
 
Theorem3dvds2dec 12007 A decimal number is divisible by three iff the sum of its three "digits" is divisible by three. The term "digits" in its narrow sense is only correct if 𝐴, 𝐵 and 𝐶 actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers 𝐴, 𝐵 and 𝐶. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0       (3 ∥ 𝐴𝐵𝐶 ↔ 3 ∥ ((𝐴 + 𝐵) + 𝐶))
 
5.1.2  Even and odd numbers

The set of integers can be partitioned into the set of even numbers and the set of odd numbers, see zeo4 12011. Instead of defining new class variables Even and Odd to represent these sets, we use the idiom 2 ∥ 𝑁 to say that "𝑁 is even" (which implies 𝑁 ∈ ℤ, see evenelz 12008) and ¬ 2 ∥ 𝑁 to say that "𝑁 is odd" (under the assumption that 𝑁 ∈ ℤ). The previously proven theorems about even and odd numbers, like zneo 9418, zeo 9422, zeo2 9423, etc. use different representations, which are equivalent with the representations using the divides relation, see evend2 12030 and oddp1d2 12031. The corresponding theorems are zeneo 12012, zeo3 12009 and zeo4 12011.

 
Theoremevenelz 12008 An even number is an integer. This follows immediately from the reverse closure of the divides relation, see dvdszrcl 11935. (Contributed by AV, 22-Jun-2021.)
(2 ∥ 𝑁𝑁 ∈ ℤ)
 
Theoremzeo3 12009 An integer is even or odd. (Contributed by AV, 17-Jun-2021.)
(𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ ¬ 2 ∥ 𝑁))
 
Theoremzeoxor 12010 An integer is even or odd but not both. (Contributed by Jim Kingdon, 10-Nov-2021.)
(𝑁 ∈ ℤ → (2 ∥ 𝑁 ⊻ ¬ 2 ∥ 𝑁))
 
Theoremzeo4 12011 An integer is even or odd but not both. (Contributed by AV, 17-Jun-2021.)
(𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ ¬ ¬ 2 ∥ 𝑁))
 
Theoremzeneo 12012 No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. This variant of zneo 9418 follows immediately from the fact that a contradiction implies anything, see pm2.21i 647. (Contributed by AV, 22-Jun-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵) → 𝐴𝐵))
 
Theoremodd2np1lem 12013* Lemma for odd2np1 12014. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
 
Theoremodd2np1 12014* An integer is odd iff it is one plus twice another integer. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
 
Theoremeven2n 12015* An integer is even iff it is twice another integer. (Contributed by AV, 25-Jun-2020.)
(2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁)
 
Theoremoddm1even 12016 An integer is odd iff its predecessor is even. (Contributed by Mario Carneiro, 5-Sep-2016.)
(𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 − 1)))
 
Theoremoddp1even 12017 An integer is odd iff its successor is even. (Contributed by Mario Carneiro, 5-Sep-2016.)
(𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 + 1)))
 
Theoremoexpneg 12018 The exponential of the negative of a number, when the exponent is odd. (Contributed by Mario Carneiro, 25-Apr-2015.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (-𝐴𝑁) = -(𝐴𝑁))
 
Theoremmod2eq0even 12019 An integer is 0 modulo 2 iff it is even (i.e. divisible by 2), see example 2 in [ApostolNT] p. 107. (Contributed by AV, 21-Jul-2021.)
(𝑁 ∈ ℤ → ((𝑁 mod 2) = 0 ↔ 2 ∥ 𝑁))
 
Theoremmod2eq1n2dvds 12020 An integer is 1 modulo 2 iff it is odd (i.e. not divisible by 2), see example 3 in [ApostolNT] p. 107. (Contributed by AV, 24-May-2020.)
(𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁))
 
Theoremoddnn02np1 12021* A nonnegative integer is odd iff it is one plus twice another nonnegative integer. (Contributed by AV, 19-Jun-2021.)
(𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁))
 
Theoremoddge22np1 12022* An integer greater than one is odd iff it is one plus twice a positive integer. (Contributed by AV, 16-Aug-2021.)
(𝑁 ∈ (ℤ‘2) → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ ((2 · 𝑛) + 1) = 𝑁))
 
Theoremevennn02n 12023* A nonnegative integer is even iff it is twice another nonnegative integer. (Contributed by AV, 12-Aug-2021.)
(𝑁 ∈ ℕ0 → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 (2 · 𝑛) = 𝑁))
 
Theoremevennn2n 12024* A positive integer is even iff it is twice another positive integer. (Contributed by AV, 12-Aug-2021.)
(𝑁 ∈ ℕ → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ (2 · 𝑛) = 𝑁))
 
Theorem2tp1odd 12025 A number which is twice an integer increased by 1 is odd. (Contributed by AV, 16-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 = ((2 · 𝐴) + 1)) → ¬ 2 ∥ 𝐵)
 
Theoremmulsucdiv2z 12026 An integer multiplied with its successor divided by 2 yields an integer, i.e. an integer multiplied with its successor is even. (Contributed by AV, 19-Jul-2021.)
(𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ)
 
Theoremsqoddm1div8z 12027 A squared odd number minus 1 divided by 8 is an integer. (Contributed by AV, 19-Jul-2021.)
((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (((𝑁↑2) − 1) / 8) ∈ ℤ)
 
Theorem2teven 12028 A number which is twice an integer is even. (Contributed by AV, 16-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 = (2 · 𝐴)) → 2 ∥ 𝐵)
 
Theoremzeo5 12029 An integer is either even or odd, version of zeo3 12009 avoiding the negation of the representation of an odd number. (Proposed by BJ, 21-Jun-2021.) (Contributed by AV, 26-Jun-2020.)
(𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ 2 ∥ (𝑁 + 1)))
 
Theoremevend2 12030 An integer is even iff its quotient with 2 is an integer. This is a representation of even numbers without using the divides relation, see zeo 9422 and zeo2 9423. (Contributed by AV, 22-Jun-2021.)
(𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ (𝑁 / 2) ∈ ℤ))
 
Theoremoddp1d2 12031 An integer is odd iff its successor divided by 2 is an integer. This is a representation of odd numbers without using the divides relation, see zeo 9422 and zeo2 9423. (Contributed by AV, 22-Jun-2021.)
(𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ))
 
Theoremzob 12032 Alternate characterizations of an odd number. (Contributed by AV, 7-Jun-2020.)
(𝑁 ∈ ℤ → (((𝑁 + 1) / 2) ∈ ℤ ↔ ((𝑁 − 1) / 2) ∈ ℤ))
 
Theoremoddm1d2 12033 An integer is odd iff its predecessor divided by 2 is an integer. This is another representation of odd numbers without using the divides relation. (Contributed by AV, 18-Jun-2021.) (Proof shortened by AV, 22-Jun-2021.)
(𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 − 1) / 2) ∈ ℤ))
 
Theoremltoddhalfle 12034 An integer is less than half of an odd number iff it is less than or equal to the half of the predecessor of the odd number (which is an even number). (Contributed by AV, 29-Jun-2021.)
((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑀 ∈ ℤ) → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))
 
Theoremhalfleoddlt 12035 An integer is greater than half of an odd number iff it is greater than or equal to the half of the odd number. (Contributed by AV, 1-Jul-2021.)
((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑀 ∈ ℤ) → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀))
 
Theoremopoe 12036 The sum of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵)) → 2 ∥ (𝐴 + 𝐵))
 
Theoremomoe 12037 The difference of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵)) → 2 ∥ (𝐴𝐵))
 
Theoremopeo 12038 The sum of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → ¬ 2 ∥ (𝐴 + 𝐵))
 
Theoremomeo 12039 The difference of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → ¬ 2 ∥ (𝐴𝐵))
 
Theoremm1expe 12040 Exponentiation of -1 by an even power. Variant of m1expeven 10657. (Contributed by AV, 25-Jun-2021.)
(2 ∥ 𝑁 → (-1↑𝑁) = 1)
 
Theoremm1expo 12041 Exponentiation of -1 by an odd power. (Contributed by AV, 26-Jun-2021.)
((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1)
 
Theoremm1exp1 12042 Exponentiation of negative one is one iff the exponent is even. (Contributed by AV, 20-Jun-2021.)
(𝑁 ∈ ℤ → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁))
 
Theoremnn0enne 12043 A positive integer is an even nonnegative integer iff it is an even positive integer. (Contributed by AV, 30-May-2020.)
(𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ0 ↔ (𝑁 / 2) ∈ ℕ))
 
Theoremnn0ehalf 12044 The half of an even nonnegative integer is a nonnegative integer. (Contributed by AV, 22-Jun-2020.) (Revised by AV, 28-Jun-2021.)
((𝑁 ∈ ℕ0 ∧ 2 ∥ 𝑁) → (𝑁 / 2) ∈ ℕ0)
 
Theoremnnehalf 12045 The half of an even positive integer is a positive integer. (Contributed by AV, 28-Jun-2021.)
((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) → (𝑁 / 2) ∈ ℕ)
 
Theoremnn0o1gt2 12046 An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020.)
((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁))
 
Theoremnno 12047 An alternate characterization of an odd integer greater than 1. (Contributed by AV, 2-Jun-2020.)
((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ)
 
Theoremnn0o 12048 An alternate characterization of an odd nonnegative integer. (Contributed by AV, 28-May-2020.) (Proof shortened by AV, 2-Jun-2020.)
((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0)
 
Theoremnn0ob 12049 Alternate characterizations of an odd nonnegative integer. (Contributed by AV, 4-Jun-2020.)
(𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ ((𝑁 − 1) / 2) ∈ ℕ0))
 
Theoremnn0oddm1d2 12050 A positive integer is odd iff its predecessor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.)
(𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ((𝑁 − 1) / 2) ∈ ℕ0))
 
Theoremnnoddm1d2 12051 A positive integer is odd iff its successor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.)
(𝑁 ∈ ℕ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℕ))
 
Theoremz0even 12052 0 is even. (Contributed by AV, 11-Feb-2020.) (Revised by AV, 23-Jun-2021.)
2 ∥ 0
 
Theoremn2dvds1 12053 2 does not divide 1 (common case). That means 1 is odd. (Contributed by David A. Wheeler, 8-Dec-2018.)
¬ 2 ∥ 1
 
Theoremn2dvdsm1 12054 2 does not divide -1. That means -1 is odd. (Contributed by AV, 15-Aug-2021.)
¬ 2 ∥ -1
 
Theoremz2even 12055 2 is even. (Contributed by AV, 12-Feb-2020.) (Revised by AV, 23-Jun-2021.)
2 ∥ 2
 
Theoremn2dvds3 12056 2 does not divide 3, i.e. 3 is an odd number. (Contributed by AV, 28-Feb-2021.)
¬ 2 ∥ 3
 
Theoremz4even 12057 4 is an even number. (Contributed by AV, 23-Jul-2020.) (Revised by AV, 4-Jul-2021.)
2 ∥ 4
 
Theorem4dvdseven 12058 An integer which is divisible by 4 is an even integer. (Contributed by AV, 4-Jul-2021.)
(4 ∥ 𝑁 → 2 ∥ 𝑁)
 
5.1.3  The division algorithm
 
Theoremdivalglemnn 12059* Lemma for divalg 12065. Existence for a positive denominator. (Contributed by Jim Kingdon, 30-Nov-2021.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
 
Theoremdivalglemqt 12060 Lemma for divalg 12065. The 𝑄 = 𝑇 case involved in showing uniqueness. (Contributed by Jim Kingdon, 5-Dec-2021.)
(𝜑𝐷 ∈ ℤ)    &   (𝜑𝑅 ∈ ℤ)    &   (𝜑𝑆 ∈ ℤ)    &   (𝜑𝑄 ∈ ℤ)    &   (𝜑𝑇 ∈ ℤ)    &   (𝜑𝑄 = 𝑇)    &   (𝜑 → ((𝑄 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑆))       (𝜑𝑅 = 𝑆)
 
Theoremdivalglemnqt 12061 Lemma for divalg 12065. The 𝑄 < 𝑇 case involved in showing uniqueness. (Contributed by Jim Kingdon, 4-Dec-2021.)
(𝜑𝐷 ∈ ℕ)    &   (𝜑𝑅 ∈ ℤ)    &   (𝜑𝑆 ∈ ℤ)    &   (𝜑𝑄 ∈ ℤ)    &   (𝜑𝑇 ∈ ℤ)    &   (𝜑 → 0 ≤ 𝑆)    &   (𝜑𝑅 < 𝐷)    &   (𝜑 → ((𝑄 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑆))       (𝜑 → ¬ 𝑄 < 𝑇)
 
Theoremdivalglemeunn 12062* Lemma for divalg 12065. Uniqueness for a positive denominator. (Contributed by Jim Kingdon, 4-Dec-2021.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
 
Theoremdivalglemex 12063* Lemma for divalg 12065. The quotient and remainder exist. (Contributed by Jim Kingdon, 30-Nov-2021.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
 
Theoremdivalglemeuneg 12064* Lemma for divalg 12065. Uniqueness for a negative denominator. (Contributed by Jim Kingdon, 4-Dec-2021.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
 
Theoremdivalg 12065* The division algorithm (theorem). Dividing an integer 𝑁 by a nonzero integer 𝐷 produces a (unique) quotient 𝑞 and a unique remainder 0 ≤ 𝑟 < (abs‘𝐷). Theorem 1.14 in [ApostolNT] p. 19. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
 
Theoremdivalgb 12066* Express the division algorithm as stated in divalg 12065 in terms of . (Contributed by Paul Chapman, 31-Mar-2011.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))))
 
Theoremdivalg2 12067* The division algorithm (theorem) for a positive divisor. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃!𝑟 ∈ ℕ0 (𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)))
 
Theoremdivalgmod 12068 The result of the mod operator satisfies the requirements for the remainder 𝑅 in the division algorithm for a positive divisor (compare divalg2 12067 and divalgb 12066). This demonstration theorem justifies the use of mod to yield an explicit remainder from this point forward. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by AV, 21-Aug-2021.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 ∈ ℕ0 ∧ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅)))))
 
Theoremdivalgmodcl 12069 The result of the mod operator satisfies the requirements for the remainder 𝑅 in the division algorithm for a positive divisor. Variant of divalgmod 12068. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Proof shortened by AV, 21-Aug-2021.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝑅 ∈ ℕ0) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅))))
 
Theoremmodremain 12070* The result of the modulo operation is the remainder of the division algorithm. (Contributed by AV, 19-Aug-2021.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → ((𝑁 mod 𝐷) = 𝑅 ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁))
 
Theoremndvdssub 12071 Corollary of the division algorithm. If an integer 𝐷 greater than 1 divides 𝑁, then it does not divide any of 𝑁 − 1, 𝑁 − 2... 𝑁 − (𝐷 − 1). (Contributed by Paul Chapman, 31-Mar-2011.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁𝐾)))
 
Theoremndvdsadd 12072 Corollary of the division algorithm. If an integer 𝐷 greater than 1 divides 𝑁, then it does not divide any of 𝑁 + 1, 𝑁 + 2... 𝑁 + (𝐷 − 1). (Contributed by Paul Chapman, 31-Mar-2011.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁 + 𝐾)))
 
Theoremndvdsp1 12073 Special case of ndvdsadd 12072. If an integer 𝐷 greater than 1 divides 𝑁, it does not divide 𝑁 + 1. (Contributed by Paul Chapman, 31-Mar-2011.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 1 < 𝐷) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁 + 1)))
 
Theoremndvdsi 12074 A quick test for non-divisibility. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝐴 ∈ ℕ    &   𝑄 ∈ ℕ0    &   𝑅 ∈ ℕ    &   ((𝐴 · 𝑄) + 𝑅) = 𝐵    &   𝑅 < 𝐴        ¬ 𝐴𝐵
 
Theoremflodddiv4 12075 The floor of an odd integer divided by 4. (Contributed by AV, 17-Jun-2021.)
((𝑀 ∈ ℤ ∧ 𝑁 = ((2 · 𝑀) + 1)) → (⌊‘(𝑁 / 4)) = if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)))
 
Theoremfldivndvdslt 12076 The floor of an integer divided by a nonzero integer not dividing the first integer is less than the integer divided by the positive integer. (Contributed by AV, 4-Jul-2021.)
((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) ∧ ¬ 𝐿𝐾) → (⌊‘(𝐾 / 𝐿)) < (𝐾 / 𝐿))
 
Theoremflodddiv4lt 12077 The floor of an odd number divided by 4 is less than the odd number divided by 4. (Contributed by AV, 4-Jul-2021.)
((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (⌊‘(𝑁 / 4)) < (𝑁 / 4))
 
Theoremflodddiv4t2lthalf 12078 The floor of an odd number divided by 4, multiplied by 2 is less than the half of the odd number. (Contributed by AV, 4-Jul-2021.)
((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < (𝑁 / 2))
 
5.1.4  The greatest common divisor operator
 
Syntaxcgcd 12079 Extend the definition of a class to include the greatest common divisor operator.
class gcd
 
Definitiondf-gcd 12080* Define the gcd operator. For example, (-6 gcd 9) = 3 (ex-gcd 15223). (Contributed by Paul Chapman, 21-Mar-2011.)
gcd = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑥𝑛𝑦)}, ℝ, < )))
 
Theoremgcdmndc 12081 Decidablity lemma used in various proofs related to gcd. (Contributed by Jim Kingdon, 12-Dec-2021.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∧ 𝑁 = 0))
 
Theoremzsupcllemstep 12082* Lemma for zsupcl 12084. Induction step. (Contributed by Jim Kingdon, 7-Dec-2021.)
((𝜑𝑛 ∈ (ℤ𝑀)) → DECID 𝜓)       (𝐾 ∈ (ℤ𝑀) → (((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))))
 
Theoremzsupcllemex 12083* Lemma for zsupcl 12084. Existence of the supremum. (Contributed by Jim Kingdon, 7-Dec-2021.)
(𝜑𝑀 ∈ ℤ)    &   (𝑛 = 𝑀 → (𝜓𝜒))    &   (𝜑𝜒)    &   ((𝜑𝑛 ∈ (ℤ𝑀)) → DECID 𝜓)    &   (𝜑 → ∃𝑗 ∈ (ℤ𝑀)∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)       (𝜑 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
 
Theoremzsupcl 12084* Closure of supremum for decidable integer properties. The property which defines the set we are taking the supremum of must (a) be true at 𝑀 (which corresponds to the nonempty condition of classical supremum theorems), (b) decidable at each value after 𝑀, and (c) be false after 𝑗 (which corresponds to the upper bound condition found in classical supremum theorems). (Contributed by Jim Kingdon, 7-Dec-2021.)
(𝜑𝑀 ∈ ℤ)    &   (𝑛 = 𝑀 → (𝜓𝜒))    &   (𝜑𝜒)    &   ((𝜑𝑛 ∈ (ℤ𝑀)) → DECID 𝜓)    &   (𝜑 → ∃𝑗 ∈ (ℤ𝑀)∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)       (𝜑 → sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ (ℤ𝑀))
 
Theoremzssinfcl 12085* The infimum of a set of integers is an element of the set. (Contributed by Jim Kingdon, 16-Jan-2022.)
(𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐵 𝑧 < 𝑦)))    &   (𝜑𝐵 ⊆ ℤ)    &   (𝜑 → inf(𝐵, ℝ, < ) ∈ ℤ)       (𝜑 → inf(𝐵, ℝ, < ) ∈ 𝐵)
 
Theoreminfssuzex 12086* Existence of the infimum of a subset of an upper set of integers. (Contributed by Jim Kingdon, 13-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑆 = {𝑛 ∈ (ℤ𝑀) ∣ 𝜓}    &   (𝜑𝐴𝑆)    &   ((𝜑𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓)       (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝑆 𝑧 < 𝑦)))
 
Theoreminfssuzledc 12087* The infimum of a subset of an upper set of integers is less than or equal to all members of the subset. (Contributed by Jim Kingdon, 13-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑆 = {𝑛 ∈ (ℤ𝑀) ∣ 𝜓}    &   (𝜑𝐴𝑆)    &   ((𝜑𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓)       (𝜑 → inf(𝑆, ℝ, < ) ≤ 𝐴)
 
Theoreminfssuzcldc 12088* The infimum of a subset of an upper set of integers belongs to the subset. (Contributed by Jim Kingdon, 20-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑆 = {𝑛 ∈ (ℤ𝑀) ∣ 𝜓}    &   (𝜑𝐴𝑆)    &   ((𝜑𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓)       (𝜑 → inf(𝑆, ℝ, < ) ∈ 𝑆)
 
Theoremsuprzubdc 12089* The supremum of a bounded-above decidable set of integers is greater than any member of the set. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 5-Oct-2024.)
(𝜑𝐴 ⊆ ℤ)    &   (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥𝐴)    &   (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)    &   (𝜑𝐵𝐴)       (𝜑𝐵 ≤ sup(𝐴, ℝ, < ))
 
Theoremnninfdcex 12090* A decidable set of natural numbers has an infimum. (Contributed by Jim Kingdon, 28-Sep-2024.)
(𝜑𝐴 ⊆ ℕ)    &   (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)    &   (𝜑 → ∃𝑦 𝑦𝐴)       (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
 
Theoremzsupssdc 12091* An inhabited decidable bounded subset of integers has a supremum in the set. (The proof does not use ax-pre-suploc 7993.) (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 5-Oct-2024.)
(𝜑𝐴 ⊆ ℤ)    &   (𝜑 → ∃𝑥 𝑥𝐴)    &   (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥𝐴)    &   (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)       (𝜑 → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
 
Theoremsuprzcl2dc 12092* The supremum of a bounded-above decidable set of integers is a member of the set. (This theorem avoids ax-pre-suploc 7993.) (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 6-Oct-2024.)
(𝜑𝐴 ⊆ ℤ)    &   (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥𝐴)    &   (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)    &   (𝜑 → ∃𝑥 𝑥𝐴)       (𝜑 → sup(𝐴, ℝ, < ) ∈ 𝐴)
 
Theoremdvdsbnd 12093* There is an upper bound to the divisors of a nonzero integer. (Contributed by Jim Kingdon, 11-Dec-2021.)
((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → ∃𝑛 ∈ ℕ ∀𝑚 ∈ (ℤ𝑛) ¬ 𝑚𝐴)
 
Theoremgcdsupex 12094* Existence of the supremum used in defining gcd. (Contributed by Jim Kingdon, 12-Dec-2021.)
(((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ (𝑛𝑋𝑛𝑌)} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ (𝑛𝑋𝑛𝑌)}𝑦 < 𝑧)))
 
Theoremgcdsupcl 12095* Closure of the supremum used in defining gcd. A lemma for gcdval 12096 and gcdn0cl 12099. (Contributed by Jim Kingdon, 11-Dec-2021.)
(((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → sup({𝑛 ∈ ℤ ∣ (𝑛𝑋𝑛𝑌)}, ℝ, < ) ∈ ℕ)
 
Theoremgcdval 12096* The value of the gcd operator. (𝑀 gcd 𝑁) is the greatest common divisor of 𝑀 and 𝑁. If 𝑀 and 𝑁 are both 0, the result is defined conventionally as 0. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by Mario Carneiro, 10-Nov-2013.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < )))
 
Theoremgcd0val 12097 The value, by convention, of the gcd operator when both operands are 0. (Contributed by Paul Chapman, 21-Mar-2011.)
(0 gcd 0) = 0
 
Theoremgcdn0val 12098* The value of the gcd operator when at least one operand is nonzero. (Contributed by Paul Chapman, 21-Mar-2011.)
(((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < ))
 
Theoremgcdn0cl 12099 Closure of the gcd operator. (Contributed by Paul Chapman, 21-Mar-2011.)
(((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) ∈ ℕ)
 
Theoremgcddvds 12100 The gcd of two integers divides each of them. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15574
  Copyright terms: Public domain < Previous  Next >