![]() |
Intuitionistic Logic Explorer Theorem List (p. 121 of 156) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | addmodlteqALT 12001 | Two nonnegative integers less than the modulus are equal iff the sums of these integer with another integer are equal modulo the modulus. Shorter proof of addmodlteq 10469 based on the "divides" relation. (Contributed by AV, 14-Mar-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼 + 𝑆) mod 𝑁) = ((𝐽 + 𝑆) mod 𝑁) ↔ 𝐼 = 𝐽)) | ||
Theorem | dvdsfac 12002 | A positive integer divides any greater factorial. (Contributed by Paul Chapman, 28-Nov-2012.) |
⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝐾 ∥ (!‘𝑁)) | ||
Theorem | dvdsexp 12003 | A power divides a power with a greater exponent. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ∥ (𝐴↑𝑁)) | ||
Theorem | dvdsmod 12004 | Any number 𝐾 whose mod base 𝑁 is divisible by a divisor 𝑃 of the base is also divisible by 𝑃. This means that primes will also be relatively prime to the base when reduced mod 𝑁 for any base. (Contributed by Mario Carneiro, 13-Mar-2014.) |
⊢ (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃 ∥ 𝑁) → (𝑃 ∥ (𝐾 mod 𝑁) ↔ 𝑃 ∥ 𝐾)) | ||
Theorem | mulmoddvds 12005 | If an integer is divisible by a positive integer, the product of this integer with another integer modulo the positive integer is 0. (Contributed by Alexander van der Vekens, 30-Aug-2018.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑁 ∥ 𝐴 → ((𝐴 · 𝐵) mod 𝑁) = 0)) | ||
Theorem | 3dvdsdec 12006 | A decimal number is divisible by three iff the sum of its two "digits" is divisible by three. The term "digits" in its narrow sense is only correct if 𝐴 and 𝐵 actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers 𝐴 and 𝐵, especially if 𝐴 is itself a decimal number, e.g., 𝐴 = ;𝐶𝐷. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 8-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 ⇒ ⊢ (3 ∥ ;𝐴𝐵 ↔ 3 ∥ (𝐴 + 𝐵)) | ||
Theorem | 3dvds2dec 12007 | A decimal number is divisible by three iff the sum of its three "digits" is divisible by three. The term "digits" in its narrow sense is only correct if 𝐴, 𝐵 and 𝐶 actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers 𝐴, 𝐵 and 𝐶. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 ⇒ ⊢ (3 ∥ ;;𝐴𝐵𝐶 ↔ 3 ∥ ((𝐴 + 𝐵) + 𝐶)) | ||
The set ℤ of integers can be partitioned into the set of even numbers and the set of odd numbers, see zeo4 12011. Instead of defining new class variables Even and Odd to represent these sets, we use the idiom 2 ∥ 𝑁 to say that "𝑁 is even" (which implies 𝑁 ∈ ℤ, see evenelz 12008) and ¬ 2 ∥ 𝑁 to say that "𝑁 is odd" (under the assumption that 𝑁 ∈ ℤ). The previously proven theorems about even and odd numbers, like zneo 9418, zeo 9422, zeo2 9423, etc. use different representations, which are equivalent with the representations using the divides relation, see evend2 12030 and oddp1d2 12031. The corresponding theorems are zeneo 12012, zeo3 12009 and zeo4 12011. | ||
Theorem | evenelz 12008 | An even number is an integer. This follows immediately from the reverse closure of the divides relation, see dvdszrcl 11935. (Contributed by AV, 22-Jun-2021.) |
⊢ (2 ∥ 𝑁 → 𝑁 ∈ ℤ) | ||
Theorem | zeo3 12009 | An integer is even or odd. (Contributed by AV, 17-Jun-2021.) |
⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ ¬ 2 ∥ 𝑁)) | ||
Theorem | zeoxor 12010 | An integer is even or odd but not both. (Contributed by Jim Kingdon, 10-Nov-2021.) |
⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ⊻ ¬ 2 ∥ 𝑁)) | ||
Theorem | zeo4 12011 | An integer is even or odd but not both. (Contributed by AV, 17-Jun-2021.) |
⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ ¬ ¬ 2 ∥ 𝑁)) | ||
Theorem | zeneo 12012 | No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. This variant of zneo 9418 follows immediately from the fact that a contradiction implies anything, see pm2.21i 647. (Contributed by AV, 22-Jun-2021.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵) → 𝐴 ≠ 𝐵)) | ||
Theorem | odd2np1lem 12013* | Lemma for odd2np1 12014. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)) | ||
Theorem | odd2np1 12014* | An integer is odd iff it is one plus twice another integer. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)) | ||
Theorem | even2n 12015* | An integer is even iff it is twice another integer. (Contributed by AV, 25-Jun-2020.) |
⊢ (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁) | ||
Theorem | oddm1even 12016 | An integer is odd iff its predecessor is even. (Contributed by Mario Carneiro, 5-Sep-2016.) |
⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 − 1))) | ||
Theorem | oddp1even 12017 | An integer is odd iff its successor is even. (Contributed by Mario Carneiro, 5-Sep-2016.) |
⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 + 1))) | ||
Theorem | oexpneg 12018 | The exponential of the negative of a number, when the exponent is odd. (Contributed by Mario Carneiro, 25-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (-𝐴↑𝑁) = -(𝐴↑𝑁)) | ||
Theorem | mod2eq0even 12019 | An integer is 0 modulo 2 iff it is even (i.e. divisible by 2), see example 2 in [ApostolNT] p. 107. (Contributed by AV, 21-Jul-2021.) |
⊢ (𝑁 ∈ ℤ → ((𝑁 mod 2) = 0 ↔ 2 ∥ 𝑁)) | ||
Theorem | mod2eq1n2dvds 12020 | An integer is 1 modulo 2 iff it is odd (i.e. not divisible by 2), see example 3 in [ApostolNT] p. 107. (Contributed by AV, 24-May-2020.) |
⊢ (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁)) | ||
Theorem | oddnn02np1 12021* | A nonnegative integer is odd iff it is one plus twice another nonnegative integer. (Contributed by AV, 19-Jun-2021.) |
⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁)) | ||
Theorem | oddge22np1 12022* | An integer greater than one is odd iff it is one plus twice a positive integer. (Contributed by AV, 16-Aug-2021.) |
⊢ (𝑁 ∈ (ℤ≥‘2) → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ ((2 · 𝑛) + 1) = 𝑁)) | ||
Theorem | evennn02n 12023* | A nonnegative integer is even iff it is twice another nonnegative integer. (Contributed by AV, 12-Aug-2021.) |
⊢ (𝑁 ∈ ℕ0 → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 (2 · 𝑛) = 𝑁)) | ||
Theorem | evennn2n 12024* | A positive integer is even iff it is twice another positive integer. (Contributed by AV, 12-Aug-2021.) |
⊢ (𝑁 ∈ ℕ → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ (2 · 𝑛) = 𝑁)) | ||
Theorem | 2tp1odd 12025 | A number which is twice an integer increased by 1 is odd. (Contributed by AV, 16-Jul-2021.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 = ((2 · 𝐴) + 1)) → ¬ 2 ∥ 𝐵) | ||
Theorem | mulsucdiv2z 12026 | An integer multiplied with its successor divided by 2 yields an integer, i.e. an integer multiplied with its successor is even. (Contributed by AV, 19-Jul-2021.) |
⊢ (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ) | ||
Theorem | sqoddm1div8z 12027 | A squared odd number minus 1 divided by 8 is an integer. (Contributed by AV, 19-Jul-2021.) |
⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (((𝑁↑2) − 1) / 8) ∈ ℤ) | ||
Theorem | 2teven 12028 | A number which is twice an integer is even. (Contributed by AV, 16-Jul-2021.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 = (2 · 𝐴)) → 2 ∥ 𝐵) | ||
Theorem | zeo5 12029 | An integer is either even or odd, version of zeo3 12009 avoiding the negation of the representation of an odd number. (Proposed by BJ, 21-Jun-2021.) (Contributed by AV, 26-Jun-2020.) |
⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ 2 ∥ (𝑁 + 1))) | ||
Theorem | evend2 12030 | An integer is even iff its quotient with 2 is an integer. This is a representation of even numbers without using the divides relation, see zeo 9422 and zeo2 9423. (Contributed by AV, 22-Jun-2021.) |
⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ (𝑁 / 2) ∈ ℤ)) | ||
Theorem | oddp1d2 12031 | An integer is odd iff its successor divided by 2 is an integer. This is a representation of odd numbers without using the divides relation, see zeo 9422 and zeo2 9423. (Contributed by AV, 22-Jun-2021.) |
⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ)) | ||
Theorem | zob 12032 | Alternate characterizations of an odd number. (Contributed by AV, 7-Jun-2020.) |
⊢ (𝑁 ∈ ℤ → (((𝑁 + 1) / 2) ∈ ℤ ↔ ((𝑁 − 1) / 2) ∈ ℤ)) | ||
Theorem | oddm1d2 12033 | An integer is odd iff its predecessor divided by 2 is an integer. This is another representation of odd numbers without using the divides relation. (Contributed by AV, 18-Jun-2021.) (Proof shortened by AV, 22-Jun-2021.) |
⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 − 1) / 2) ∈ ℤ)) | ||
Theorem | ltoddhalfle 12034 | An integer is less than half of an odd number iff it is less than or equal to the half of the predecessor of the odd number (which is an even number). (Contributed by AV, 29-Jun-2021.) |
⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ∧ 𝑀 ∈ ℤ) → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2))) | ||
Theorem | halfleoddlt 12035 | An integer is greater than half of an odd number iff it is greater than or equal to the half of the odd number. (Contributed by AV, 1-Jul-2021.) |
⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ∧ 𝑀 ∈ ℤ) → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀)) | ||
Theorem | opoe 12036 | The sum of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵)) → 2 ∥ (𝐴 + 𝐵)) | ||
Theorem | omoe 12037 | The difference of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵)) → 2 ∥ (𝐴 − 𝐵)) | ||
Theorem | opeo 12038 | The sum of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → ¬ 2 ∥ (𝐴 + 𝐵)) | ||
Theorem | omeo 12039 | The difference of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → ¬ 2 ∥ (𝐴 − 𝐵)) | ||
Theorem | m1expe 12040 | Exponentiation of -1 by an even power. Variant of m1expeven 10657. (Contributed by AV, 25-Jun-2021.) |
⊢ (2 ∥ 𝑁 → (-1↑𝑁) = 1) | ||
Theorem | m1expo 12041 | Exponentiation of -1 by an odd power. (Contributed by AV, 26-Jun-2021.) |
⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1) | ||
Theorem | m1exp1 12042 | Exponentiation of negative one is one iff the exponent is even. (Contributed by AV, 20-Jun-2021.) |
⊢ (𝑁 ∈ ℤ → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁)) | ||
Theorem | nn0enne 12043 | A positive integer is an even nonnegative integer iff it is an even positive integer. (Contributed by AV, 30-May-2020.) |
⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ0 ↔ (𝑁 / 2) ∈ ℕ)) | ||
Theorem | nn0ehalf 12044 | The half of an even nonnegative integer is a nonnegative integer. (Contributed by AV, 22-Jun-2020.) (Revised by AV, 28-Jun-2021.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 2 ∥ 𝑁) → (𝑁 / 2) ∈ ℕ0) | ||
Theorem | nnehalf 12045 | The half of an even positive integer is a positive integer. (Contributed by AV, 28-Jun-2021.) |
⊢ ((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) → (𝑁 / 2) ∈ ℕ) | ||
Theorem | nn0o1gt2 12046 | An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020.) |
⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁)) | ||
Theorem | nno 12047 | An alternate characterization of an odd integer greater than 1. (Contributed by AV, 2-Jun-2020.) |
⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ) | ||
Theorem | nn0o 12048 | An alternate characterization of an odd nonnegative integer. (Contributed by AV, 28-May-2020.) (Proof shortened by AV, 2-Jun-2020.) |
⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0) | ||
Theorem | nn0ob 12049 | Alternate characterizations of an odd nonnegative integer. (Contributed by AV, 4-Jun-2020.) |
⊢ (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ ((𝑁 − 1) / 2) ∈ ℕ0)) | ||
Theorem | nn0oddm1d2 12050 | A positive integer is odd iff its predecessor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.) |
⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ((𝑁 − 1) / 2) ∈ ℕ0)) | ||
Theorem | nnoddm1d2 12051 | A positive integer is odd iff its successor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.) |
⊢ (𝑁 ∈ ℕ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℕ)) | ||
Theorem | z0even 12052 | 0 is even. (Contributed by AV, 11-Feb-2020.) (Revised by AV, 23-Jun-2021.) |
⊢ 2 ∥ 0 | ||
Theorem | n2dvds1 12053 | 2 does not divide 1 (common case). That means 1 is odd. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ ¬ 2 ∥ 1 | ||
Theorem | n2dvdsm1 12054 | 2 does not divide -1. That means -1 is odd. (Contributed by AV, 15-Aug-2021.) |
⊢ ¬ 2 ∥ -1 | ||
Theorem | z2even 12055 | 2 is even. (Contributed by AV, 12-Feb-2020.) (Revised by AV, 23-Jun-2021.) |
⊢ 2 ∥ 2 | ||
Theorem | n2dvds3 12056 | 2 does not divide 3, i.e. 3 is an odd number. (Contributed by AV, 28-Feb-2021.) |
⊢ ¬ 2 ∥ 3 | ||
Theorem | z4even 12057 | 4 is an even number. (Contributed by AV, 23-Jul-2020.) (Revised by AV, 4-Jul-2021.) |
⊢ 2 ∥ 4 | ||
Theorem | 4dvdseven 12058 | An integer which is divisible by 4 is an even integer. (Contributed by AV, 4-Jul-2021.) |
⊢ (4 ∥ 𝑁 → 2 ∥ 𝑁) | ||
Theorem | divalglemnn 12059* | Lemma for divalg 12065. Existence for a positive denominator. (Contributed by Jim Kingdon, 30-Nov-2021.) |
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) | ||
Theorem | divalglemqt 12060 | Lemma for divalg 12065. The 𝑄 = 𝑇 case involved in showing uniqueness. (Contributed by Jim Kingdon, 5-Dec-2021.) |
⊢ (𝜑 → 𝐷 ∈ ℤ) & ⊢ (𝜑 → 𝑅 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ ℤ) & ⊢ (𝜑 → 𝑄 ∈ ℤ) & ⊢ (𝜑 → 𝑇 ∈ ℤ) & ⊢ (𝜑 → 𝑄 = 𝑇) & ⊢ (𝜑 → ((𝑄 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑆)) ⇒ ⊢ (𝜑 → 𝑅 = 𝑆) | ||
Theorem | divalglemnqt 12061 | Lemma for divalg 12065. The 𝑄 < 𝑇 case involved in showing uniqueness. (Contributed by Jim Kingdon, 4-Dec-2021.) |
⊢ (𝜑 → 𝐷 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ ℤ) & ⊢ (𝜑 → 𝑄 ∈ ℤ) & ⊢ (𝜑 → 𝑇 ∈ ℤ) & ⊢ (𝜑 → 0 ≤ 𝑆) & ⊢ (𝜑 → 𝑅 < 𝐷) & ⊢ (𝜑 → ((𝑄 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑆)) ⇒ ⊢ (𝜑 → ¬ 𝑄 < 𝑇) | ||
Theorem | divalglemeunn 12062* | Lemma for divalg 12065. Uniqueness for a positive denominator. (Contributed by Jim Kingdon, 4-Dec-2021.) |
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) | ||
Theorem | divalglemex 12063* | Lemma for divalg 12065. The quotient and remainder exist. (Contributed by Jim Kingdon, 30-Nov-2021.) |
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) | ||
Theorem | divalglemeuneg 12064* | Lemma for divalg 12065. Uniqueness for a negative denominator. (Contributed by Jim Kingdon, 4-Dec-2021.) |
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) | ||
Theorem | divalg 12065* | The division algorithm (theorem). Dividing an integer 𝑁 by a nonzero integer 𝐷 produces a (unique) quotient 𝑞 and a unique remainder 0 ≤ 𝑟 < (abs‘𝐷). Theorem 1.14 in [ApostolNT] p. 19. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) | ||
Theorem | divalgb 12066* | Express the division algorithm as stated in divalg 12065 in terms of ∥. (Contributed by Paul Chapman, 31-Mar-2011.) |
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁 − 𝑟)))) | ||
Theorem | divalg2 12067* | The division algorithm (theorem) for a positive divisor. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃!𝑟 ∈ ℕ0 (𝑟 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑟))) | ||
Theorem | divalgmod 12068 | The result of the mod operator satisfies the requirements for the remainder 𝑅 in the division algorithm for a positive divisor (compare divalg2 12067 and divalgb 12066). This demonstration theorem justifies the use of mod to yield an explicit remainder from this point forward. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by AV, 21-Aug-2021.) |
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 ∈ ℕ0 ∧ (𝑅 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑅))))) | ||
Theorem | divalgmodcl 12069 | The result of the mod operator satisfies the requirements for the remainder 𝑅 in the division algorithm for a positive divisor. Variant of divalgmod 12068. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Proof shortened by AV, 21-Aug-2021.) |
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝑅 ∈ ℕ0) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑅)))) | ||
Theorem | modremain 12070* | The result of the modulo operation is the remainder of the division algorithm. (Contributed by AV, 19-Aug-2021.) |
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → ((𝑁 mod 𝐷) = 𝑅 ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁)) | ||
Theorem | ndvdssub 12071 | Corollary of the division algorithm. If an integer 𝐷 greater than 1 divides 𝑁, then it does not divide any of 𝑁 − 1, 𝑁 − 2... 𝑁 − (𝐷 − 1). (Contributed by Paul Chapman, 31-Mar-2011.) |
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷 ∥ 𝑁 → ¬ 𝐷 ∥ (𝑁 − 𝐾))) | ||
Theorem | ndvdsadd 12072 | Corollary of the division algorithm. If an integer 𝐷 greater than 1 divides 𝑁, then it does not divide any of 𝑁 + 1, 𝑁 + 2... 𝑁 + (𝐷 − 1). (Contributed by Paul Chapman, 31-Mar-2011.) |
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷 ∥ 𝑁 → ¬ 𝐷 ∥ (𝑁 + 𝐾))) | ||
Theorem | ndvdsp1 12073 | Special case of ndvdsadd 12072. If an integer 𝐷 greater than 1 divides 𝑁, it does not divide 𝑁 + 1. (Contributed by Paul Chapman, 31-Mar-2011.) |
⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 1 < 𝐷) → (𝐷 ∥ 𝑁 → ¬ 𝐷 ∥ (𝑁 + 1))) | ||
Theorem | ndvdsi 12074 | A quick test for non-divisibility. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝐴 ∈ ℕ & ⊢ 𝑄 ∈ ℕ0 & ⊢ 𝑅 ∈ ℕ & ⊢ ((𝐴 · 𝑄) + 𝑅) = 𝐵 & ⊢ 𝑅 < 𝐴 ⇒ ⊢ ¬ 𝐴 ∥ 𝐵 | ||
Theorem | flodddiv4 12075 | The floor of an odd integer divided by 4. (Contributed by AV, 17-Jun-2021.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 = ((2 · 𝑀) + 1)) → (⌊‘(𝑁 / 4)) = if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2))) | ||
Theorem | fldivndvdslt 12076 | The floor of an integer divided by a nonzero integer not dividing the first integer is less than the integer divided by the positive integer. (Contributed by AV, 4-Jul-2021.) |
⊢ ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) ∧ ¬ 𝐿 ∥ 𝐾) → (⌊‘(𝐾 / 𝐿)) < (𝐾 / 𝐿)) | ||
Theorem | flodddiv4lt 12077 | The floor of an odd number divided by 4 is less than the odd number divided by 4. (Contributed by AV, 4-Jul-2021.) |
⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (⌊‘(𝑁 / 4)) < (𝑁 / 4)) | ||
Theorem | flodddiv4t2lthalf 12078 | The floor of an odd number divided by 4, multiplied by 2 is less than the half of the odd number. (Contributed by AV, 4-Jul-2021.) |
⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < (𝑁 / 2)) | ||
Syntax | cgcd 12079 | Extend the definition of a class to include the greatest common divisor operator. |
class gcd | ||
Definition | df-gcd 12080* | Define the gcd operator. For example, (-6 gcd 9) = 3 (ex-gcd 15223). (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ gcd = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦)}, ℝ, < ))) | ||
Theorem | gcdmndc 12081 | Decidablity lemma used in various proofs related to gcd. (Contributed by Jim Kingdon, 12-Dec-2021.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∧ 𝑁 = 0)) | ||
Theorem | zsupcllemstep 12082* | Lemma for zsupcl 12084. Induction step. (Contributed by Jim Kingdon, 7-Dec-2021.) |
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → DECID 𝜓) ⇒ ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (((𝜑 ∧ ∀𝑛 ∈ (ℤ≥‘𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ≥‘(𝐾 + 1)) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))) | ||
Theorem | zsupcllemex 12083* | Lemma for zsupcl 12084. Existence of the supremum. (Contributed by Jim Kingdon, 7-Dec-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝑛 = 𝑀 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → DECID 𝜓) & ⊢ (𝜑 → ∃𝑗 ∈ (ℤ≥‘𝑀)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ 𝜓) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) | ||
Theorem | zsupcl 12084* | Closure of supremum for decidable integer properties. The property which defines the set we are taking the supremum of must (a) be true at 𝑀 (which corresponds to the nonempty condition of classical supremum theorems), (b) decidable at each value after 𝑀, and (c) be false after 𝑗 (which corresponds to the upper bound condition found in classical supremum theorems). (Contributed by Jim Kingdon, 7-Dec-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝑛 = 𝑀 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → DECID 𝜓) & ⊢ (𝜑 → ∃𝑗 ∈ (ℤ≥‘𝑀)∀𝑛 ∈ (ℤ≥‘𝑗) ¬ 𝜓) ⇒ ⊢ (𝜑 → sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ (ℤ≥‘𝑀)) | ||
Theorem | zssinfcl 12085* | The infimum of a set of integers is an element of the set. (Contributed by Jim Kingdon, 16-Jan-2022.) |
⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐵 𝑧 < 𝑦))) & ⊢ (𝜑 → 𝐵 ⊆ ℤ) & ⊢ (𝜑 → inf(𝐵, ℝ, < ) ∈ ℤ) ⇒ ⊢ (𝜑 → inf(𝐵, ℝ, < ) ∈ 𝐵) | ||
Theorem | infssuzex 12086* | Existence of the infimum of a subset of an upper set of integers. (Contributed by Jim Kingdon, 13-Jan-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑆 = {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝑆 𝑧 < 𝑦))) | ||
Theorem | infssuzledc 12087* | The infimum of a subset of an upper set of integers is less than or equal to all members of the subset. (Contributed by Jim Kingdon, 13-Jan-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑆 = {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓) ⇒ ⊢ (𝜑 → inf(𝑆, ℝ, < ) ≤ 𝐴) | ||
Theorem | infssuzcldc 12088* | The infimum of a subset of an upper set of integers belongs to the subset. (Contributed by Jim Kingdon, 20-Jan-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑆 = {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓) ⇒ ⊢ (𝜑 → inf(𝑆, ℝ, < ) ∈ 𝑆) | ||
Theorem | suprzubdc 12089* | The supremum of a bounded-above decidable set of integers is greater than any member of the set. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 5-Oct-2024.) |
⊢ (𝜑 → 𝐴 ⊆ ℤ) & ⊢ (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ≤ sup(𝐴, ℝ, < )) | ||
Theorem | nninfdcex 12090* | A decidable set of natural numbers has an infimum. (Contributed by Jim Kingdon, 28-Sep-2024.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑦 𝑦 ∈ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) | ||
Theorem | zsupssdc 12091* | An inhabited decidable bounded subset of integers has a supremum in the set. (The proof does not use ax-pre-suploc 7993.) (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 5-Oct-2024.) |
⊢ (𝜑 → 𝐴 ⊆ ℤ) & ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
Theorem | suprzcl2dc 12092* | The supremum of a bounded-above decidable set of integers is a member of the set. (This theorem avoids ax-pre-suploc 7993.) (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 6-Oct-2024.) |
⊢ (𝜑 → 𝐴 ⊆ ℤ) & ⊢ (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) & ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) ⇒ ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ 𝐴) | ||
Theorem | dvdsbnd 12093* | There is an upper bound to the divisors of a nonzero integer. (Contributed by Jim Kingdon, 11-Dec-2021.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → ∃𝑛 ∈ ℕ ∀𝑚 ∈ (ℤ≥‘𝑛) ¬ 𝑚 ∥ 𝐴) | ||
Theorem | gcdsupex 12094* | Existence of the supremum used in defining gcd. (Contributed by Jim Kingdon, 12-Dec-2021.) |
⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)}𝑦 < 𝑧))) | ||
Theorem | gcdsupcl 12095* | Closure of the supremum used in defining gcd. A lemma for gcdval 12096 and gcdn0cl 12099. (Contributed by Jim Kingdon, 11-Dec-2021.) |
⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)}, ℝ, < ) ∈ ℕ) | ||
Theorem | gcdval 12096* | The value of the gcd operator. (𝑀 gcd 𝑁) is the greatest common divisor of 𝑀 and 𝑁. If 𝑀 and 𝑁 are both 0, the result is defined conventionally as 0. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by Mario Carneiro, 10-Nov-2013.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ))) | ||
Theorem | gcd0val 12097 | The value, by convention, of the gcd operator when both operands are 0. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ (0 gcd 0) = 0 | ||
Theorem | gcdn0val 12098* | The value of the gcd operator when at least one operand is nonzero. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < )) | ||
Theorem | gcdn0cl 12099 | Closure of the gcd operator. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) ∈ ℕ) | ||
Theorem | gcddvds 12100 | The gcd of two integers divides each of them. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |