Theorem List for Intuitionistic Logic Explorer - 12001-12100 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | hashuni 12001* |
The cardinality of a disjoint union. (Contributed by Mario Carneiro,
24-Jan-2015.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ Fin) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝑥) ⇒ ⊢ (𝜑 → (♯‘∪ 𝐴)
= Σ𝑥 ∈ 𝐴 (♯‘𝑥)) |
| |
| 4.9.3 The binomial theorem
|
| |
| Theorem | binomlem 12002* |
Lemma for binom 12003 (binomial theorem). Inductive step.
(Contributed by
NM, 6-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜓 → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁 − 𝑘)) · (𝐵↑𝑘)))) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ((𝐴 + 𝐵)↑(𝑁 + 1)) = Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁 + 1)C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵↑𝑘)))) |
| |
| Theorem | binom 12003* |
The binomial theorem: (𝐴 + 𝐵)↑𝑁 is the sum from 𝑘 = 0 to
𝑁 of (𝑁C𝑘) · ((𝐴↑𝑘) · (𝐵↑(𝑁 − 𝑘)). Theorem
15-2.8 of [Gleason] p. 296. This part
of the proof sets up the
induction and does the base case, with the bulk of the work (the
induction step) in binomlem 12002. This is Metamath 100 proof #44.
(Contributed by NM, 7-Dec-2005.) (Proof shortened by Mario Carneiro,
24-Apr-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁 − 𝑘)) · (𝐵↑𝑘)))) |
| |
| Theorem | binom1p 12004* |
Special case of the binomial theorem for (1 + 𝐴)↑𝑁.
(Contributed by Paul Chapman, 10-May-2007.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((1 +
𝐴)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (𝐴↑𝑘))) |
| |
| Theorem | binom11 12005* |
Special case of the binomial theorem for 2↑𝑁. (Contributed by
Mario Carneiro, 13-Mar-2014.)
|
| ⊢ (𝑁 ∈ ℕ0 →
(2↑𝑁) = Σ𝑘 ∈ (0...𝑁)(𝑁C𝑘)) |
| |
| Theorem | binom1dif 12006* |
A summation for the difference between ((𝐴 + 1)↑𝑁) and
(𝐴↑𝑁). (Contributed by Scott Fenton,
9-Apr-2014.) (Revised by
Mario Carneiro, 22-May-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) →
(((𝐴 + 1)↑𝑁) − (𝐴↑𝑁)) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · (𝐴↑𝑘))) |
| |
| Theorem | bcxmaslem1 12007 |
Lemma for bcxmas 12008. (Contributed by Paul Chapman,
18-May-2007.)
|
| ⊢ (𝐴 = 𝐵 → ((𝑁 + 𝐴)C𝐴) = ((𝑁 + 𝐵)C𝐵)) |
| |
| Theorem | bcxmas 12008* |
Parallel summation (Christmas Stocking) theorem for Pascal's Triangle.
(Contributed by Paul Chapman, 18-May-2007.) (Revised by Mario Carneiro,
24-Apr-2014.)
|
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0)
→ (((𝑁 + 1) + 𝑀)C𝑀) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗)) |
| |
| 4.9.4 Infinite sums (cont.)
|
| |
| Theorem | isumshft 12009* |
Index shift of an infinite sum. (Contributed by Paul Chapman,
31-Oct-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 =
(ℤ≥‘(𝑀 + 𝐾)) & ⊢ (𝑗 = (𝐾 + 𝑘) → 𝐴 = 𝐵)
& ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑊) → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝑊 𝐴 = Σ𝑘 ∈ 𝑍 𝐵) |
| |
| Theorem | isumsplit 12010* |
Split off the first 𝑁 terms of an infinite sum.
(Contributed by
Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 21-Oct-2022.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 =
(ℤ≥‘𝑁)
& ⊢ (𝜑 → 𝑁 ∈ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘 ∈ 𝑊 𝐴)) |
| |
| Theorem | isum1p 12011* |
The infinite sum of a converging infinite series equals the first term
plus the infinite sum of the rest of it. (Contributed by NM,
2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = ((𝐹‘𝑀) + Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))𝐴)) |
| |
| Theorem | isumnn0nn 12012* |
Sum from 0 to infinity in terms of sum from 1 to infinity. (Contributed
by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ (𝑘 = 0 → 𝐴 = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → seq0( + , 𝐹) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ ℕ0 𝐴 = (𝐵 + Σ𝑘 ∈ ℕ 𝐴)) |
| |
| Theorem | isumrpcl 12013* |
The infinite sum of positive reals is positive. (Contributed by Paul
Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 =
(ℤ≥‘𝑁)
& ⊢ (𝜑 → 𝑁 ∈ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑊 𝐴 ∈
ℝ+) |
| |
| Theorem | isumle 12014* |
Comparison of two infinite sums. (Contributed by Paul Chapman,
13-Nov-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ≤ 𝐵)
& ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 ≤ Σ𝑘 ∈ 𝑍 𝐵) |
| |
| Theorem | isumlessdc 12015* |
A finite sum of nonnegative numbers is less than or equal to its limit.
(Contributed by Mario Carneiro, 24-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵)
& ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 DECID 𝑘 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐵)
& ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝑍 𝐵) |
| |
| 4.9.5 Miscellaneous converging and diverging
sequences
|
| |
| Theorem | divcnv 12016* |
The sequence of reciprocals of positive integers, multiplied by the
factor 𝐴, converges to zero. (Contributed by
NM, 6-Feb-2008.)
(Revised by Jim Kingdon, 22-Oct-2022.)
|
| ⊢ (𝐴 ∈ ℂ → (𝑛 ∈ ℕ ↦ (𝐴 / 𝑛)) ⇝ 0) |
| |
| 4.9.6 Arithmetic series
|
| |
| Theorem | arisum 12017* |
Arithmetic series sum of the first 𝑁 positive integers. This is
Metamath 100 proof #68. (Contributed by FL, 16-Nov-2006.) (Proof
shortened by Mario Carneiro, 22-May-2014.)
|
| ⊢ (𝑁 ∈ ℕ0 →
Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2)) |
| |
| Theorem | arisum2 12018* |
Arithmetic series sum of the first 𝑁 nonnegative integers.
(Contributed by Mario Carneiro, 17-Apr-2015.) (Proof shortened by AV,
2-Aug-2021.)
|
| ⊢ (𝑁 ∈ ℕ0 →
Σ𝑘 ∈
(0...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2)) |
| |
| Theorem | trireciplem 12019 |
Lemma for trirecip 12020. Show that the sum converges. (Contributed
by
Scott Fenton, 22-Apr-2014.) (Revised by Mario Carneiro,
22-May-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1)))) ⇒ ⊢ seq1( + , 𝐹) ⇝ 1 |
| |
| Theorem | trirecip 12020 |
The sum of the reciprocals of the triangle numbers converge to two.
This is Metamath 100 proof #42. (Contributed by Scott Fenton,
23-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
|
| ⊢ Σ𝑘 ∈ ℕ (2 / (𝑘 · (𝑘 + 1))) = 2 |
| |
| 4.9.7 Geometric series
|
| |
| Theorem | expcnvap0 12021* |
A sequence of powers of a complex number 𝐴 with absolute value
smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.)
(Revised by Jim Kingdon, 23-Oct-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) < 1) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0) |
| |
| Theorem | expcnvre 12022* |
A sequence of powers of a nonnegative real number less than one
converges to zero. (Contributed by Jim Kingdon, 28-Oct-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0) |
| |
| Theorem | expcnv 12023* |
A sequence of powers of a complex number 𝐴 with absolute value
smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.)
(Revised by Jim Kingdon, 28-Oct-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) <
1) ⇒ ⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0) |
| |
| Theorem | explecnv 12024* |
A sequence of terms converges to zero when it is less than powers of a
number 𝐴 whose absolute value is smaller than
1. (Contributed by
NM, 19-Jul-2008.) (Revised by Mario Carneiro, 26-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ 𝑉)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐴) < 1) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐹‘𝑘)) ≤ (𝐴↑𝑘)) ⇒ ⊢ (𝜑 → 𝐹 ⇝ 0) |
| |
| Theorem | geosergap 12025* |
The value of the finite geometric series 𝐴↑𝑀 + 𝐴↑(𝑀 + 1) +...
+ 𝐴↑(𝑁 − 1). (Contributed by Mario
Carneiro, 2-May-2016.)
(Revised by Jim Kingdon, 24-Oct-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 1) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀))
⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘) = (((𝐴↑𝑀) − (𝐴↑𝑁)) / (1 − 𝐴))) |
| |
| Theorem | geoserap 12026* |
The value of the finite geometric series 1 + 𝐴↑1 + 𝐴↑2 +...
+ 𝐴↑(𝑁 − 1). This is Metamath 100
proof #66. (Contributed by
NM, 12-May-2006.) (Revised by Jim Kingdon, 24-Oct-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 1) & ⊢ (𝜑 → 𝑁 ∈
ℕ0) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘) = ((1 − (𝐴↑𝑁)) / (1 − 𝐴))) |
| |
| Theorem | pwm1geoserap1 12027* |
The n-th power of a number decreased by 1 expressed by the finite
geometric series 1 + 𝐴↑1 + 𝐴↑2 +... + 𝐴↑(𝑁 − 1).
(Contributed by AV, 14-Aug-2021.) (Revised by Jim Kingdon,
24-Oct-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 # 1) ⇒ ⊢ (𝜑 → ((𝐴↑𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘))) |
| |
| Theorem | absltap 12028 |
Less-than of absolute value implies apartness. (Contributed by Jim
Kingdon, 29-Oct-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐴) < 𝐵) ⇒ ⊢ (𝜑 → 𝐴 # 𝐵) |
| |
| Theorem | absgtap 12029 |
Greater-than of absolute value implies apartness. (Contributed by Jim
Kingdon, 29-Oct-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 < (abs‘𝐴)) ⇒ ⊢ (𝜑 → 𝐴 # 𝐵) |
| |
| Theorem | geolim 12030* |
The partial sums in the infinite series 1 + 𝐴↑1 + 𝐴↑2...
converge to (1 / (1 − 𝐴)). (Contributed by NM,
15-May-2006.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) < 1) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = (𝐴↑𝑘)) ⇒ ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (1 / (1 − 𝐴))) |
| |
| Theorem | geolim2 12031* |
The partial sums in the geometric series 𝐴↑𝑀 + 𝐴↑(𝑀 + 1)...
converge to ((𝐴↑𝑀) / (1 − 𝐴)). (Contributed by NM,
6-Jun-2006.) (Revised by Mario Carneiro, 26-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) < 1) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = (𝐴↑𝑘)) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ ((𝐴↑𝑀) / (1 − 𝐴))) |
| |
| Theorem | georeclim 12032* |
The limit of a geometric series of reciprocals. (Contributed by Paul
Chapman, 28-Dec-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 1 < (abs‘𝐴)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((1 / 𝐴)↑𝑘)) ⇒ ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1))) |
| |
| Theorem | geo2sum 12033* |
The value of the finite geometric series 2↑-1 + 2↑-2
+...
+ 2↑-𝑁, multiplied by a constant.
(Contributed by Mario
Carneiro, 17-Mar-2014.) (Revised by Mario Carneiro, 26-Apr-2014.)
|
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)(𝐴 / (2↑𝑘)) = (𝐴 − (𝐴 / (2↑𝑁)))) |
| |
| Theorem | geo2sum2 12034* |
The value of the finite geometric series 1 + 2 + 4 + 8
+...
+ 2↑(𝑁 − 1). (Contributed by Mario
Carneiro, 7-Sep-2016.)
|
| ⊢ (𝑁 ∈ ℕ0 →
Σ𝑘 ∈ (0..^𝑁)(2↑𝑘) = ((2↑𝑁) − 1)) |
| |
| Theorem | geo2lim 12035* |
The value of the infinite geometric series
2↑-1 + 2↑-2 +... , multiplied by a
constant. (Contributed
by Mario Carneiro, 15-Jun-2014.)
|
| ⊢ 𝐹 = (𝑘 ∈ ℕ ↦ (𝐴 / (2↑𝑘))) ⇒ ⊢ (𝐴 ∈ ℂ → seq1( + , 𝐹) ⇝ 𝐴) |
| |
| Theorem | geoisum 12036* |
The infinite sum of 1 + 𝐴↑1 + 𝐴↑2... is (1 /
(1 − 𝐴)).
(Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro,
26-Apr-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → Σ𝑘 ∈ ℕ0
(𝐴↑𝑘) = (1 / (1 − 𝐴))) |
| |
| Theorem | geoisumr 12037* |
The infinite sum of reciprocals
1 + (1 / 𝐴)↑1 + (1 / 𝐴)↑2... is 𝐴 / (𝐴 − 1).
(Contributed by rpenner, 3-Nov-2007.) (Revised by Mario Carneiro,
26-Apr-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 1 <
(abs‘𝐴)) →
Σ𝑘 ∈
ℕ0 ((1 / 𝐴)↑𝑘) = (𝐴 / (𝐴 − 1))) |
| |
| Theorem | geoisum1 12038* |
The infinite sum of 𝐴↑1 + 𝐴↑2... is (𝐴 / (1 − 𝐴)).
(Contributed by NM, 1-Nov-2007.) (Revised by Mario Carneiro,
26-Apr-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → Σ𝑘 ∈ ℕ (𝐴↑𝑘) = (𝐴 / (1 − 𝐴))) |
| |
| Theorem | geoisum1c 12039* |
The infinite sum of 𝐴 · (𝑅↑1) + 𝐴 · (𝑅↑2)... is
(𝐴
· 𝑅) / (1 −
𝑅). (Contributed by
NM, 2-Nov-2007.) (Revised
by Mario Carneiro, 26-Apr-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝐴 · (𝑅↑𝑘)) = ((𝐴 · 𝑅) / (1 − 𝑅))) |
| |
| Theorem | 0.999... 12040 |
The recurring decimal 0.999..., which is defined as the infinite sum 0.9 +
0.09 + 0.009 + ... i.e. 9 / 10↑1 + 9 / 10↑2 + 9
/ 10↑3
+ ..., is exactly equal to 1. (Contributed by NM,
2-Nov-2007.)
(Revised by AV, 8-Sep-2021.)
|
| ⊢ Σ𝑘 ∈ ℕ (9 / (;10↑𝑘)) = 1 |
| |
| Theorem | geoihalfsum 12041 |
Prove that the infinite geometric series of 1/2, 1/2 + 1/4 + 1/8 + ... =
1. Uses geoisum1 12038. This is a representation of .111... in
binary with
an infinite number of 1's. Theorem 0.999... 12040 proves a similar claim for
.999... in base 10. (Contributed by David A. Wheeler, 4-Jan-2017.)
(Proof shortened by AV, 9-Jul-2022.)
|
| ⊢ Σ𝑘 ∈ ℕ (1 / (2↑𝑘)) = 1 |
| |
| 4.9.8 Ratio test for infinite series
convergence
|
| |
| Theorem | cvgratnnlembern 12042 |
Lemma for cvgratnn 12050. Upper bound for a geometric progression of
positive ratio less than one. (Contributed by Jim Kingdon,
24-Nov-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴)
& ⊢ (𝜑 → 𝑀 ∈ ℕ)
⇒ ⊢ (𝜑 → (𝐴↑𝑀) < ((1 / ((1 / 𝐴) − 1)) / 𝑀)) |
| |
| Theorem | cvgratnnlemnexp 12043* |
Lemma for cvgratnn 12050. (Contributed by Jim Kingdon, 15-Nov-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ)
⇒ ⊢ (𝜑 → (abs‘(𝐹‘𝑁)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑁 − 1)))) |
| |
| Theorem | cvgratnnlemmn 12044* |
Lemma for cvgratnn 12050. (Contributed by Jim Kingdon,
15-Nov-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀))
⇒ ⊢ (𝜑 → (abs‘(𝐹‘𝑁)) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑁 − 𝑀)))) |
| |
| Theorem | cvgratnnlemseq 12045* |
Lemma for cvgratnn 12050. (Contributed by Jim Kingdon,
21-Nov-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀))
⇒ ⊢ (𝜑 → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹‘𝑖)) |
| |
| Theorem | cvgratnnlemabsle 12046* |
Lemma for cvgratnn 12050. (Contributed by Jim Kingdon,
21-Nov-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀))
⇒ ⊢ (𝜑 → (abs‘Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹‘𝑖)) ≤ ((abs‘(𝐹‘𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖 − 𝑀)))) |
| |
| Theorem | cvgratnnlemsumlt 12047* |
Lemma for cvgratnn 12050. (Contributed by Jim Kingdon,
23-Nov-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀))
⇒ ⊢ (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖 − 𝑀)) < (𝐴 / (1 − 𝐴))) |
| |
| Theorem | cvgratnnlemfm 12048* |
Lemma for cvgratnn 12050. (Contributed by Jim Kingdon, 23-Nov-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) & ⊢ (𝜑 → 𝑀 ∈ ℕ)
⇒ ⊢ (𝜑 → (abs‘(𝐹‘𝑀)) < ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀)) |
| |
| Theorem | cvgratnnlemrate 12049* |
Lemma for cvgratnn 12050. (Contributed by Jim Kingdon, 21-Nov-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀))
⇒ ⊢ (𝜑 → (abs‘((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) / 𝑀)) |
| |
| Theorem | cvgratnn 12050* |
Ratio test for convergence of a complex infinite series. If the ratio
𝐴 of the absolute values of successive
terms in an infinite
sequence 𝐹 is less than 1 for all terms, then
the infinite sum of
the terms of 𝐹 converges to a complex number.
Although this
theorem is similar to cvgratz 12051 and cvgratgt0 12052, the decision to
index starting at one is not merely cosmetic, as proving convergence
using climcvg1n 11869 is sensitive to how a sequence is indexed.
(Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon,
12-Nov-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) ⇒ ⊢ (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ ) |
| |
| Theorem | cvgratz 12051* |
Ratio test for convergence of a complex infinite series. If the ratio
𝐴 of the absolute values of successive
terms in an infinite sequence
𝐹 is less than 1 for all terms, then
the infinite sum of the terms
of 𝐹 converges to a complex number.
(Contributed by NM,
26-Apr-2005.) (Revised by Jim Kingdon, 11-Nov-2022.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
| |
| Theorem | cvgratgt0 12052* |
Ratio test for convergence of a complex infinite series. If the ratio
𝐴 of the absolute values of successive
terms in an infinite sequence
𝐹 is less than 1 for all terms beyond
some index 𝐵, then the
infinite sum of the terms of 𝐹 converges to a complex number.
(Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon,
11-Nov-2022.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 =
(ℤ≥‘𝑁)
& ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 1) & ⊢ (𝜑 → 0 < 𝐴)
& ⊢ (𝜑 → 𝑁 ∈ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
| |
| 4.9.9 Mertens' theorem
|
| |
| Theorem | mertenslemub 12053* |
Lemma for mertensabs 12056. An upper bound for 𝑇. (Contributed by
Jim Kingdon, 3-Dec-2022.)
|
| ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → seq0( + , 𝐺) ∈ dom ⇝
)
& ⊢ 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑆 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))} & ⊢ (𝜑 → 𝑋 ∈ 𝑇)
& ⊢ (𝜑 → 𝑆 ∈ ℕ)
⇒ ⊢ (𝜑 → 𝑋 ≤ Σ𝑛 ∈ (0...(𝑆 − 1))(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) |
| |
| Theorem | mertenslemi1 12054* |
Lemma for mertensabs 12056. (Contributed by Mario Carneiro,
29-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
|
| ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐹‘𝑗) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐾‘𝑗) = (abs‘𝐴)) & ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐻‘𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗)))) & ⊢ (𝜑 → seq0( + , 𝐾) ∈ dom ⇝
)
& ⊢ (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))} & ⊢ (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈
(ℤ≥‘𝑠)(abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) & ⊢ (𝜑 → 𝑃 ∈ ℝ) & ⊢ (𝜑 → (𝜓 ∧ (𝑡 ∈ ℕ0 ∧
∀𝑚 ∈
(ℤ≥‘𝑡)(𝐾‘𝑚) < (((𝐸 / 2) / 𝑠) / (𝑃 + 1))))) & ⊢ (𝜑 → 0 ≤ 𝑃)
& ⊢ (𝜑 → ∀𝑤 ∈ 𝑇 𝑤 ≤ 𝑃) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸) |
| |
| Theorem | mertenslem2 12055* |
Lemma for mertensabs 12056. (Contributed by Mario Carneiro,
28-Apr-2014.)
|
| ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐹‘𝑗) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐾‘𝑗) = (abs‘𝐴)) & ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐻‘𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗)))) & ⊢ (𝜑 → seq0( + , 𝐾) ∈ dom ⇝
)
& ⊢ (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))} & ⊢ (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈
(ℤ≥‘𝑠)(abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸) |
| |
| Theorem | mertensabs 12056* |
Mertens' theorem. If 𝐴(𝑗) is an absolutely convergent series
and
𝐵(𝑘) is convergent, then
(Σ𝑗 ∈ ℕ0𝐴(𝑗) · Σ𝑘 ∈ ℕ0𝐵(𝑘)) =
Σ𝑘 ∈ ℕ0Σ𝑗 ∈ (0...𝑘)(𝐴(𝑗) · 𝐵(𝑘 − 𝑗)) (and
this latter series is convergent). This latter sum is commonly known as
the Cauchy product of the sequences. The proof follows the outline at
http://en.wikipedia.org/wiki/Cauchy_product#Proof_of_Mertens.27_theorem.
(Contributed by Mario Carneiro, 29-Apr-2014.) (Revised by Jim Kingdon,
8-Dec-2022.)
|
| ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐹‘𝑗) = 𝐴)
& ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐾‘𝑗) = (abs‘𝐴)) & ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐻‘𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗)))) & ⊢ (𝜑 → seq0( + , 𝐾) ∈ dom ⇝
)
& ⊢ (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ ) & ⊢ (𝜑 → seq0( + , 𝐹) ∈ dom ⇝
) ⇒ ⊢ (𝜑 → seq0( + , 𝐻) ⇝ (Σ𝑗 ∈ ℕ0 𝐴 · Σ𝑘 ∈ ℕ0
𝐵)) |
| |
| 4.9.10 Finite and infinite
products
|
| |
| 4.9.10.1 Product sequences
|
| |
| Theorem | prodf 12057* |
An infinite product of complex terms is a function from an upper set of
integers to ℂ. (Contributed by Scott
Fenton, 4-Dec-2017.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ)
⇒ ⊢ (𝜑 → seq𝑀( · , 𝐹):𝑍⟶ℂ) |
| |
| Theorem | clim2prod 12058* |
The limit of an infinite product with an initial segment added.
(Contributed by Scott Fenton, 18-Dec-2017.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ (𝜑 → seq(𝑁 + 1)( · , 𝐹) ⇝ 𝐴) ⇒ ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ ((seq𝑀( · , 𝐹)‘𝑁) · 𝐴)) |
| |
| Theorem | clim2divap 12059* |
The limit of an infinite product with an initial segment removed.
(Contributed by Scott Fenton, 20-Dec-2017.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝐴)
& ⊢ (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) # 0) ⇒ ⊢ (𝜑 → seq(𝑁 + 1)( · , 𝐹) ⇝ (𝐴 / (seq𝑀( · , 𝐹)‘𝑁))) |
| |
| Theorem | prod3fmul 12060* |
The product of two infinite products. (Contributed by Scott Fenton,
18-Dec-2017.) (Revised by Jim Kingdon, 22-Mar-2024.)
|
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐻‘𝑘) = ((𝐹‘𝑘) · (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq𝑀( · , 𝐺)‘𝑁))) |
| |
| Theorem | prodf1 12061 |
The value of the partial products in a one-valued infinite product.
(Contributed by Scott Fenton, 5-Dec-2017.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀)
⇒ ⊢ (𝑁 ∈ 𝑍 → (seq𝑀( · , (𝑍 × {1}))‘𝑁) = 1) |
| |
| Theorem | prodf1f 12062 |
A one-valued infinite product is equal to the constant one function.
(Contributed by Scott Fenton, 5-Dec-2017.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀)
⇒ ⊢ (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1})) |
| |
| Theorem | prodfclim1 12063 |
The constant one product converges to one. (Contributed by Scott
Fenton, 5-Dec-2017.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀)
⇒ ⊢ (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) ⇝ 1) |
| |
| Theorem | prodfap0 12064* |
The product of finitely many terms apart from zero is apart from zero.
(Contributed by Scott Fenton, 14-Jan-2018.) (Revised by Jim Kingdon,
23-Mar-2024.)
|
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) # 0) ⇒ ⊢ (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) # 0) |
| |
| Theorem | prodfrecap 12065* |
The reciprocal of a finite product. (Contributed by Scott Fenton,
15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
|
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) # 0) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) = (1 / (𝐹‘𝑘))) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ ℂ)
⇒ ⊢ (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) = (1 / (seq𝑀( · , 𝐹)‘𝑁))) |
| |
| Theorem | prodfdivap 12066* |
The quotient of two products. (Contributed by Scott Fenton,
15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
|
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) # 0) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐻‘𝑘) = ((𝐹‘𝑘) / (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁))) |
| |
| 4.9.10.2 Non-trivial convergence
|
| |
| Theorem | ntrivcvgap 12067* |
A non-trivially converging infinite product converges. (Contributed by
Scott Fenton, 18-Dec-2017.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ)
⇒ ⊢ (𝜑 → seq𝑀( · , 𝐹) ∈ dom ⇝ ) |
| |
| Theorem | ntrivcvgap0 12068* |
A product that converges to a value apart from zero converges
non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋)
& ⊢ (𝜑 → 𝑋 # 0) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) |
| |
| 4.9.10.3 Complex products
|
| |
| Syntax | cprod 12069 |
Extend class notation to include complex products.
|
| class ∏𝑘 ∈ 𝐴 𝐵 |
| |
| Definition | df-proddc 12070* |
Define the product of a series with an index set of integers 𝐴.
This definition takes most of the aspects of df-sumdc 11873 and adapts them
for multiplication instead of addition. However, we insist that in the
infinite case, there is a nonzero tail of the sequence. This ensures
that the convergence criteria match those of infinite sums.
(Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon,
21-Mar-2024.)
|
| ⊢ ∏𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) |
| |
| Theorem | prodeq1f 12071 |
Equality theorem for a product. (Contributed by Scott Fenton,
1-Dec-2017.)
|
| ⊢ Ⅎ𝑘𝐴
& ⊢ Ⅎ𝑘𝐵 ⇒ ⊢ (𝐴 = 𝐵 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
| |
| Theorem | prodeq1 12072* |
Equality theorem for a product. (Contributed by Scott Fenton,
1-Dec-2017.)
|
| ⊢ (𝐴 = 𝐵 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
| |
| Theorem | nfcprod1 12073* |
Bound-variable hypothesis builder for product. (Contributed by Scott
Fenton, 4-Dec-2017.)
|
| ⊢ Ⅎ𝑘𝐴 ⇒ ⊢ Ⅎ𝑘∏𝑘 ∈ 𝐴 𝐵 |
| |
| Theorem | nfcprod 12074* |
Bound-variable hypothesis builder for product: if 𝑥 is (effectively)
not free in 𝐴 and 𝐵, it is not free in ∏𝑘 ∈
𝐴𝐵.
(Contributed by Scott Fenton, 1-Dec-2017.)
|
| ⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥∏𝑘 ∈ 𝐴 𝐵 |
| |
| Theorem | prodeq2w 12075* |
Equality theorem for product, when the class expressions 𝐵 and 𝐶
are equal everywhere. Proved using only Extensionality. (Contributed
by Scott Fenton, 4-Dec-2017.)
|
| ⊢ (∀𝑘 𝐵 = 𝐶 → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶) |
| |
| Theorem | prodeq2 12076* |
Equality theorem for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
| ⊢ (∀𝑘 ∈ 𝐴 𝐵 = 𝐶 → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶) |
| |
| Theorem | cbvprod 12077* |
Change bound variable in a product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
| ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶)
& ⊢ Ⅎ𝑘𝐴
& ⊢ Ⅎ𝑗𝐴
& ⊢ Ⅎ𝑘𝐵
& ⊢ Ⅎ𝑗𝐶 ⇒ ⊢ ∏𝑗 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶 |
| |
| Theorem | cbvprodv 12078* |
Change bound variable in a product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
| ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) ⇒ ⊢ ∏𝑗 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶 |
| |
| Theorem | cbvprodi 12079* |
Change bound variable in a product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
| ⊢ Ⅎ𝑘𝐵
& ⊢ Ⅎ𝑗𝐶
& ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) ⇒ ⊢ ∏𝑗 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶 |
| |
| Theorem | prodeq1i 12080* |
Equality inference for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶 |
| |
| Theorem | prodeq2i 12081* |
Equality inference for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
| ⊢ (𝑘 ∈ 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶 |
| |
| Theorem | prodeq12i 12082* |
Equality inference for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
| ⊢ 𝐴 = 𝐵
& ⊢ (𝑘 ∈ 𝐴 → 𝐶 = 𝐷) ⇒ ⊢ ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐷 |
| |
| Theorem | prodeq1d 12083* |
Equality deduction for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
| |
| Theorem | prodeq2d 12084* |
Equality deduction for product. Note that unlike prodeq2dv 12085, 𝑘
may occur in 𝜑. (Contributed by Scott Fenton,
4-Dec-2017.)
|
| ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶) |
| |
| Theorem | prodeq2dv 12085* |
Equality deduction for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
| ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶) |
| |
| Theorem | prodeq2sdv 12086* |
Equality deduction for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
| ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶) |
| |
| Theorem | 2cprodeq2dv 12087* |
Equality deduction for double product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
| ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ∏𝑗 ∈ 𝐴 ∏𝑘 ∈ 𝐵 𝐶 = ∏𝑗 ∈ 𝐴 ∏𝑘 ∈ 𝐵 𝐷) |
| |
| Theorem | prodeq12dv 12088* |
Equality deduction for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
| ⊢ (𝜑 → 𝐴 = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐷) |
| |
| Theorem | prodeq12rdv 12089* |
Equality deduction for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
| ⊢ (𝜑 → 𝐴 = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐷) |
| |
| Theorem | prodrbdclem 12090* |
Lemma for prodrbdc 12093. (Contributed by Scott Fenton, 4-Dec-2017.)
(Revised by Jim Kingdon, 4-Apr-2024.)
|
| ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ 𝐴)
& ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀))
⇒ ⊢ ((𝜑 ∧ 𝐴 ⊆
(ℤ≥‘𝑁)) → (seq𝑀( · , 𝐹) ↾
(ℤ≥‘𝑁)) = seq𝑁( · , 𝐹)) |
| |
| Theorem | fproddccvg 12091* |
The sequence of partial products of a finite product converges to
the whole product. (Contributed by Scott Fenton, 4-Dec-2017.)
|
| ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ 𝐴)
& ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐴 ⊆ (𝑀...𝑁)) ⇒ ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ (seq𝑀( · , 𝐹)‘𝑁)) |
| |
| Theorem | prodrbdclem2 12092* |
Lemma for prodrbdc 12093. (Contributed by Scott Fenton,
4-Dec-2017.)
|
| ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ⊆
(ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐴 ⊆
(ℤ≥‘𝑁)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → DECID
𝑘 ∈ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (seq𝑀( · , 𝐹) ⇝ 𝐶 ↔ seq𝑁( · , 𝐹) ⇝ 𝐶)) |
| |
| Theorem | prodrbdc 12093* |
Rebase the starting point of a product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
| ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ⊆
(ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐴 ⊆
(ℤ≥‘𝑁)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → DECID
𝑘 ∈ 𝐴) ⇒ ⊢ (𝜑 → (seq𝑀( · , 𝐹) ⇝ 𝐶 ↔ seq𝑁( · , 𝐹) ⇝ 𝐶)) |
| |
| Theorem | prodmodclem3 12094* |
Lemma for prodmodc 12097. (Contributed by Scott Fenton, 4-Dec-2017.)
(Revised by Jim Kingdon, 11-Apr-2024.)
|
| ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ 𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑘⦌𝐵, 1)) & ⊢ 𝐻 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝐾‘𝑗) / 𝑘⦌𝐵, 1)) & ⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) & ⊢ (𝜑 → 𝑓:(1...𝑀)–1-1-onto→𝐴)
& ⊢ (𝜑 → 𝐾:(1...𝑁)–1-1-onto→𝐴) ⇒ ⊢ (𝜑 → (seq1( · , 𝐺)‘𝑀) = (seq1( · , 𝐻)‘𝑁)) |
| |
| Theorem | prodmodclem2a 12095* |
Lemma for prodmodc 12097. (Contributed by Scott Fenton, 4-Dec-2017.)
(Revised by Jim Kingdon, 11-Apr-2024.)
|
| ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ 𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑘⦌𝐵, 1)) & ⊢ 𝐻 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝐾‘𝑗) / 𝑘⦌𝐵, 1)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ 𝐴)
& ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ⊆
(ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝑓:(1...𝑁)–1-1-onto→𝐴)
& ⊢ (𝜑 → 𝐾 Isom < , <
((1...(♯‘𝐴)),
𝐴)) ⇒ ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑁)) |
| |
| Theorem | prodmodclem2 12096* |
Lemma for prodmodc 12097. (Contributed by Scott Fenton, 4-Dec-2017.)
(Revised by Jim Kingdon, 13-Apr-2024.)
|
| ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ 𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑘⦌𝐵, 1)) ⇒ ⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥))) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧)) |
| |
| Theorem | prodmodc 12097* |
A product has at most one limit. (Contributed by Scott Fenton,
4-Dec-2017.) (Modified by Jim Kingdon, 14-Apr-2024.)
|
| ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ 𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑘⦌𝐵, 1)) ⇒ ⊢ (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)))) |
| |
| Theorem | zproddc 12098* |
Series product with index set a subset of the upper integers.
(Contributed by Scott Fenton, 5-Dec-2017.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
& ⊢ (𝜑 → 𝐴 ⊆ 𝑍)
& ⊢ (𝜑 → ∀𝑗 ∈ 𝑍 DECID 𝑗 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 1)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = ( ⇝ ‘seq𝑀( · , 𝐹))) |
| |
| Theorem | iprodap 12099* |
Series product with an upper integer index set (i.e. an infinite
product.) (Contributed by Scott Fenton, 5-Dec-2017.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝑍 𝐵 = ( ⇝ ‘seq𝑀( · , 𝐹))) |
| |
| Theorem | zprodap0 12100* |
Nonzero series product with index set a subset of the upper integers.
(Contributed by Scott Fenton, 6-Dec-2017.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑋 # 0) & ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋)
& ⊢ (𝜑 → ∀𝑗 ∈ 𝑍 DECID 𝑗 ∈ 𝐴)
& ⊢ (𝜑 → 𝐴 ⊆ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 1)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = 𝑋) |