Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3-1 GIF version

Theorem seq3-1 10337
 Description: Value of the sequence builder function at its initial value. (Contributed by Jim Kingdon, 3-Oct-2022.)
Hypotheses
Ref Expression
seq3-1.m (𝜑𝑀 ∈ ℤ)
seq3-1.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
seq3-1.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
seq3-1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
Distinct variable groups:   𝑥, + ,𝑦   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦

Proof of Theorem seq3-1
Dummy variables 𝑎 𝑏 𝑤 𝑧 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seq3-1.m . 2 (𝜑𝑀 ∈ ℤ)
2 fveq2 5461 . . . 4 (𝑥 = 𝑀 → (𝐹𝑥) = (𝐹𝑀))
32eleq1d 2223 . . 3 (𝑥 = 𝑀 → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹𝑀) ∈ 𝑆))
4 seq3-1.f . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
54ralrimiva 2527 . . 3 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ 𝑆)
6 uzid 9432 . . . 4 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
71, 6syl 14 . . 3 (𝜑𝑀 ∈ (ℤ𝑀))
83, 5, 7rspcdva 2818 . 2 (𝜑 → (𝐹𝑀) ∈ 𝑆)
9 ssv 3146 . . 3 𝑆 ⊆ V
109a1i 9 . 2 (𝜑𝑆 ⊆ V)
11 seq3-1.pl . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
124, 11iseqovex 10333 . 2 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝑆)
13 iseqvalcbv 10334 . 2 frec((𝑎 ∈ (ℤ𝑀), 𝑏 ∈ V ↦ ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)
141, 13, 4, 11seq3val 10335 . 2 (𝜑 → seq𝑀( + , 𝐹) = ran frec((𝑎 ∈ (ℤ𝑀), 𝑏 ∈ V ↦ ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)⟩), ⟨𝑀, (𝐹𝑀)⟩))
151, 8, 10, 12, 13, 14frecuzrdg0t 10299 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   = wceq 1332   ∈ wcel 2125  Vcvv 2709   ⊆ wss 3098  ⟨cop 3559  ‘cfv 5163  (class class class)co 5814   ∈ cmpo 5816  freccfrec 6327  1c1 7712   + caddc 7714  ℤcz 9146  ℤ≥cuz 9418  seqcseq 10322 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-addcom 7811  ax-addass 7813  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-0id 7819  ax-rnegex 7820  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-ltadd 7827 This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-frec 6328  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-inn 8813  df-n0 9070  df-z 9147  df-uz 9419  df-seqfrec 10323 This theorem is referenced by:  seq3clss  10344  seq3fveq2  10346  seq3fveq  10348  seq3shft2  10350  seq3split  10356  seq3-1p  10357  seq3caopr3  10358  seq3id3  10384  seq3id  10385  seq3homo  10387  seq3z  10388  ser3ge0  10394  exp3vallem  10398  exp1  10403  fac1  10580  bcn2  10615  seq3coll  10690  resqrexlemf1  10885  sumsnf  11283  isumrpcl  11368  clim2prod  11413  prodfap0  11419  prodfrecap  11420  prodsnf  11466  ef0lem  11534  ege2le3  11545  efgt1p2  11569  efgt1p  11570  ialgr0  11893
 Copyright terms: Public domain W3C validator