| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seq3-1 | GIF version | ||
| Description: Value of the sequence builder function at its initial value. (Contributed by Jim Kingdon, 3-Oct-2022.) |
| Ref | Expression |
|---|---|
| seq3-1.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| seq3-1.f | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
| seq3-1.pl | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| Ref | Expression |
|---|---|
| seq3-1 | ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seq3-1.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | fveq2 5561 | . . . 4 ⊢ (𝑥 = 𝑀 → (𝐹‘𝑥) = (𝐹‘𝑀)) | |
| 3 | 2 | eleq1d 2265 | . . 3 ⊢ (𝑥 = 𝑀 → ((𝐹‘𝑥) ∈ 𝑆 ↔ (𝐹‘𝑀) ∈ 𝑆)) |
| 4 | seq3-1.f | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) | |
| 5 | 4 | ralrimiva 2570 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐹‘𝑥) ∈ 𝑆) |
| 6 | uzid 9634 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
| 7 | 1, 6 | syl 14 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 8 | 3, 5, 7 | rspcdva 2873 | . 2 ⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝑆) |
| 9 | ssv 3206 | . . 3 ⊢ 𝑆 ⊆ V | |
| 10 | 9 | a1i 9 | . 2 ⊢ (𝜑 → 𝑆 ⊆ V) |
| 11 | seq3-1.pl | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
| 12 | 4, 11 | iseqovex 10569 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝑆) |
| 13 | iseqvalcbv 10570 | . 2 ⊢ frec((𝑎 ∈ (ℤ≥‘𝑀), 𝑏 ∈ V ↦ 〈(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ≥‘𝑀), 𝑑 ∈ 𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)〉), 〈𝑀, (𝐹‘𝑀)〉) = frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) | |
| 14 | 1, 13, 4, 11 | seq3val 10571 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐹) = ran frec((𝑎 ∈ (ℤ≥‘𝑀), 𝑏 ∈ V ↦ 〈(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ≥‘𝑀), 𝑑 ∈ 𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)〉), 〈𝑀, (𝐹‘𝑀)〉)) |
| 15 | 1, 8, 10, 12, 13, 14 | frecuzrdg0t 10533 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ⊆ wss 3157 〈cop 3626 ‘cfv 5259 (class class class)co 5925 ∈ cmpo 5927 freccfrec 6457 1c1 7899 + caddc 7901 ℤcz 9345 ℤ≥cuz 9620 seqcseq 10558 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-0id 8006 ax-rnegex 8007 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-ltadd 8014 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-inn 9010 df-n0 9269 df-z 9346 df-uz 9621 df-seqfrec 10559 |
| This theorem is referenced by: seq1g 10574 seq3clss 10582 seq3fveq2 10586 seq3fveq 10590 seq3shft2 10592 seq3split 10599 seq3-1p 10601 seq3caopr3 10602 seq3id3 10635 seq3id 10636 seq3homo 10638 seq3z 10639 seqfeq4g 10642 ser3ge0 10647 exp3vallem 10651 exp1 10656 fac1 10840 bcn2 10875 seq3coll 10953 resqrexlemf1 11192 sumsnf 11593 isumrpcl 11678 clim2prod 11723 prodfap0 11729 prodfrecap 11730 prodsnf 11776 ef0lem 11844 ege2le3 11855 efgt1p2 11879 efgt1p 11880 ialgr0 12239 pcmpt 12539 gsumsplit1r 13102 gsumprval 13103 gsumfzz 13199 mulg1 13337 |
| Copyright terms: Public domain | W3C validator |