![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > infssuzledc | GIF version |
Description: The infimum of a subset of an upper set of integers is less than or equal to all members of the subset. (Contributed by Jim Kingdon, 13-Jan-2022.) |
Ref | Expression |
---|---|
infssuzledc.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
infssuzledc.s | ⊢ 𝑆 = {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} |
infssuzledc.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
infssuzledc.dc | ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓) |
Ref | Expression |
---|---|
infssuzledc | ⊢ (𝜑 → inf(𝑆, ℝ, < ) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lttri3 8101 | . . . 4 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎 = 𝑏 ↔ (¬ 𝑎 < 𝑏 ∧ ¬ 𝑏 < 𝑎))) | |
2 | 1 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (𝑎 = 𝑏 ↔ (¬ 𝑎 < 𝑏 ∧ ¬ 𝑏 < 𝑎))) |
3 | infssuzledc.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
4 | infssuzledc.s | . . . 4 ⊢ 𝑆 = {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} | |
5 | infssuzledc.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
6 | infssuzledc.dc | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓) | |
7 | 3, 4, 5, 6 | infssuzex 12089 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝑆 𝑧 < 𝑦))) |
8 | 2, 7 | infclti 7084 | . 2 ⊢ (𝜑 → inf(𝑆, ℝ, < ) ∈ ℝ) |
9 | elrabi 2914 | . . . 4 ⊢ (𝐴 ∈ {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} → 𝐴 ∈ (ℤ≥‘𝑀)) | |
10 | 9, 4 | eleq2s 2288 | . . 3 ⊢ (𝐴 ∈ 𝑆 → 𝐴 ∈ (ℤ≥‘𝑀)) |
11 | eluzelre 9605 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘𝑀) → 𝐴 ∈ ℝ) | |
12 | 5, 10, 11 | 3syl 17 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
13 | 2, 7 | inflbti 7085 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝑆 → ¬ 𝐴 < inf(𝑆, ℝ, < ))) |
14 | 5, 13 | mpd 13 | . 2 ⊢ (𝜑 → ¬ 𝐴 < inf(𝑆, ℝ, < )) |
15 | 8, 12, 14 | nltled 8142 | 1 ⊢ (𝜑 → inf(𝑆, ℝ, < ) ≤ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 835 = wceq 1364 ∈ wcel 2164 {crab 2476 class class class wbr 4030 ‘cfv 5255 (class class class)co 5919 infcinf 7044 ℝcr 7873 < clt 8056 ≤ cle 8057 ℤcz 9320 ℤ≥cuz 9595 ...cfz 10077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-sup 7045 df-inf 7046 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-n0 9244 df-z 9321 df-uz 9596 df-fz 10078 df-fzo 10212 |
This theorem is referenced by: zsupssdc 12094 nnminle 12175 nninfctlemfo 12180 lcmledvds 12211 odzdvds 12386 4sqlem13m 12544 4sqlem17 12548 |
Copyright terms: Public domain | W3C validator |