ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infssuzledc GIF version

Theorem infssuzledc 11954
Description: The infimum of a subset of an upper set of integers is less than or equal to all members of the subset. (Contributed by Jim Kingdon, 13-Jan-2022.)
Hypotheses
Ref Expression
infssuzledc.m (𝜑𝑀 ∈ ℤ)
infssuzledc.s 𝑆 = {𝑛 ∈ (ℤ𝑀) ∣ 𝜓}
infssuzledc.a (𝜑𝐴𝑆)
infssuzledc.dc ((𝜑𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓)
Assertion
Ref Expression
infssuzledc (𝜑 → inf(𝑆, ℝ, < ) ≤ 𝐴)
Distinct variable groups:   𝐴,𝑛   𝑛,𝑀   𝜑,𝑛
Allowed substitution hints:   𝜓(𝑛)   𝑆(𝑛)

Proof of Theorem infssuzledc
Dummy variables 𝑦 𝑎 𝑏 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lttri3 8040 . . . 4 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎 = 𝑏 ↔ (¬ 𝑎 < 𝑏 ∧ ¬ 𝑏 < 𝑎)))
21adantl 277 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (𝑎 = 𝑏 ↔ (¬ 𝑎 < 𝑏 ∧ ¬ 𝑏 < 𝑎)))
3 infssuzledc.m . . . 4 (𝜑𝑀 ∈ ℤ)
4 infssuzledc.s . . . 4 𝑆 = {𝑛 ∈ (ℤ𝑀) ∣ 𝜓}
5 infssuzledc.a . . . 4 (𝜑𝐴𝑆)
6 infssuzledc.dc . . . 4 ((𝜑𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓)
73, 4, 5, 6infssuzex 11953 . . 3 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝑆 𝑧 < 𝑦)))
82, 7infclti 7025 . 2 (𝜑 → inf(𝑆, ℝ, < ) ∈ ℝ)
9 elrabi 2892 . . . 4 (𝐴 ∈ {𝑛 ∈ (ℤ𝑀) ∣ 𝜓} → 𝐴 ∈ (ℤ𝑀))
109, 4eleq2s 2272 . . 3 (𝐴𝑆𝐴 ∈ (ℤ𝑀))
11 eluzelre 9541 . . 3 (𝐴 ∈ (ℤ𝑀) → 𝐴 ∈ ℝ)
125, 10, 113syl 17 . 2 (𝜑𝐴 ∈ ℝ)
132, 7inflbti 7026 . . 3 (𝜑 → (𝐴𝑆 → ¬ 𝐴 < inf(𝑆, ℝ, < )))
145, 13mpd 13 . 2 (𝜑 → ¬ 𝐴 < inf(𝑆, ℝ, < ))
158, 12, 14nltled 8081 1 (𝜑 → inf(𝑆, ℝ, < ) ≤ 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 834   = wceq 1353  wcel 2148  {crab 2459   class class class wbr 4005  cfv 5218  (class class class)co 5878  infcinf 6985  cr 7813   < clt 7995  cle 7996  cz 9256  cuz 9531  ...cfz 10011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-addass 7916  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-0id 7922  ax-rnegex 7923  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-sup 6986  df-inf 6987  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-inn 8923  df-n0 9180  df-z 9257  df-uz 9532  df-fz 10012  df-fzo 10146
This theorem is referenced by:  zsupssdc  11958  nnminle  12039  lcmledvds  12073  odzdvds  12248
  Copyright terms: Public domain W3C validator