![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > infssuzledc | GIF version |
Description: The infimum of a subset of an upper set of integers is less than or equal to all members of the subset. (Contributed by Jim Kingdon, 13-Jan-2022.) |
Ref | Expression |
---|---|
infssuzledc.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
infssuzledc.s | ⊢ 𝑆 = {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} |
infssuzledc.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
infssuzledc.dc | ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓) |
Ref | Expression |
---|---|
infssuzledc | ⊢ (𝜑 → inf(𝑆, ℝ, < ) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lttri3 8040 | . . . 4 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎 = 𝑏 ↔ (¬ 𝑎 < 𝑏 ∧ ¬ 𝑏 < 𝑎))) | |
2 | 1 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (𝑎 = 𝑏 ↔ (¬ 𝑎 < 𝑏 ∧ ¬ 𝑏 < 𝑎))) |
3 | infssuzledc.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
4 | infssuzledc.s | . . . 4 ⊢ 𝑆 = {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} | |
5 | infssuzledc.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
6 | infssuzledc.dc | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓) | |
7 | 3, 4, 5, 6 | infssuzex 11953 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ 𝑆 𝑧 < 𝑦))) |
8 | 2, 7 | infclti 7025 | . 2 ⊢ (𝜑 → inf(𝑆, ℝ, < ) ∈ ℝ) |
9 | elrabi 2892 | . . . 4 ⊢ (𝐴 ∈ {𝑛 ∈ (ℤ≥‘𝑀) ∣ 𝜓} → 𝐴 ∈ (ℤ≥‘𝑀)) | |
10 | 9, 4 | eleq2s 2272 | . . 3 ⊢ (𝐴 ∈ 𝑆 → 𝐴 ∈ (ℤ≥‘𝑀)) |
11 | eluzelre 9541 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘𝑀) → 𝐴 ∈ ℝ) | |
12 | 5, 10, 11 | 3syl 17 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
13 | 2, 7 | inflbti 7026 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝑆 → ¬ 𝐴 < inf(𝑆, ℝ, < ))) |
14 | 5, 13 | mpd 13 | . 2 ⊢ (𝜑 → ¬ 𝐴 < inf(𝑆, ℝ, < )) |
15 | 8, 12, 14 | nltled 8081 | 1 ⊢ (𝜑 → inf(𝑆, ℝ, < ) ≤ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 834 = wceq 1353 ∈ wcel 2148 {crab 2459 class class class wbr 4005 ‘cfv 5218 (class class class)co 5878 infcinf 6985 ℝcr 7813 < clt 7995 ≤ cle 7996 ℤcz 9256 ℤ≥cuz 9531 ...cfz 10011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-addcom 7914 ax-addass 7916 ax-distr 7918 ax-i2m1 7919 ax-0lt1 7920 ax-0id 7922 ax-rnegex 7923 ax-cnre 7925 ax-pre-ltirr 7926 ax-pre-ltwlin 7927 ax-pre-lttrn 7928 ax-pre-apti 7929 ax-pre-ltadd 7930 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-1st 6144 df-2nd 6145 df-sup 6986 df-inf 6987 df-pnf 7997 df-mnf 7998 df-xr 7999 df-ltxr 8000 df-le 8001 df-sub 8133 df-neg 8134 df-inn 8923 df-n0 9180 df-z 9257 df-uz 9532 df-fz 10012 df-fzo 10146 |
This theorem is referenced by: zsupssdc 11958 nnminle 12039 lcmledvds 12073 odzdvds 12248 |
Copyright terms: Public domain | W3C validator |