Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  infssuzledc GIF version

Theorem infssuzledc 11713
 Description: The infimum of a subset of an upper set of integers is less than or equal to all members of the subset. (Contributed by Jim Kingdon, 13-Jan-2022.)
Hypotheses
Ref Expression
infssuzledc.m (𝜑𝑀 ∈ ℤ)
infssuzledc.s 𝑆 = {𝑛 ∈ (ℤ𝑀) ∣ 𝜓}
infssuzledc.a (𝜑𝐴𝑆)
infssuzledc.dc ((𝜑𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓)
Assertion
Ref Expression
infssuzledc (𝜑 → inf(𝑆, ℝ, < ) ≤ 𝐴)
Distinct variable groups:   𝐴,𝑛   𝑛,𝑀   𝜑,𝑛
Allowed substitution hints:   𝜓(𝑛)   𝑆(𝑛)

Proof of Theorem infssuzledc
Dummy variables 𝑦 𝑎 𝑏 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lttri3 7895 . . . 4 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎 = 𝑏 ↔ (¬ 𝑎 < 𝑏 ∧ ¬ 𝑏 < 𝑎)))
21adantl 275 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (𝑎 = 𝑏 ↔ (¬ 𝑎 < 𝑏 ∧ ¬ 𝑏 < 𝑎)))
3 infssuzledc.m . . . 4 (𝜑𝑀 ∈ ℤ)
4 infssuzledc.s . . . 4 𝑆 = {𝑛 ∈ (ℤ𝑀) ∣ 𝜓}
5 infssuzledc.a . . . 4 (𝜑𝐴𝑆)
6 infssuzledc.dc . . . 4 ((𝜑𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓)
73, 4, 5, 6infssuzex 11712 . . 3 (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝑆 𝑧 < 𝑦)))
82, 7infclti 6926 . 2 (𝜑 → inf(𝑆, ℝ, < ) ∈ ℝ)
9 elrabi 2842 . . . 4 (𝐴 ∈ {𝑛 ∈ (ℤ𝑀) ∣ 𝜓} → 𝐴 ∈ (ℤ𝑀))
109, 4eleq2s 2235 . . 3 (𝐴𝑆𝐴 ∈ (ℤ𝑀))
11 eluzelre 9387 . . 3 (𝐴 ∈ (ℤ𝑀) → 𝐴 ∈ ℝ)
125, 10, 113syl 17 . 2 (𝜑𝐴 ∈ ℝ)
132, 7inflbti 6927 . . 3 (𝜑 → (𝐴𝑆 → ¬ 𝐴 < inf(𝑆, ℝ, < )))
145, 13mpd 13 . 2 (𝜑 → ¬ 𝐴 < inf(𝑆, ℝ, < ))
158, 12, 14nltled 7934 1 (𝜑 → inf(𝑆, ℝ, < ) ≤ 𝐴)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104  DECID wdc 820   = wceq 1332   ∈ wcel 1481  {crab 2421   class class class wbr 3938  ‘cfv 5134  (class class class)co 5785  infcinf 6886  ℝcr 7670   < clt 7851   ≤ cle 7852  ℤcz 9105  ℤ≥cuz 9377  ...cfz 9848 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4055  ax-pow 4107  ax-pr 4141  ax-un 4365  ax-setind 4462  ax-cnex 7762  ax-resscn 7763  ax-1cn 7764  ax-1re 7765  ax-icn 7766  ax-addcl 7767  ax-addrcl 7768  ax-mulcl 7769  ax-addcom 7771  ax-addass 7773  ax-distr 7775  ax-i2m1 7776  ax-0lt1 7777  ax-0id 7779  ax-rnegex 7780  ax-cnre 7782  ax-pre-ltirr 7783  ax-pre-ltwlin 7784  ax-pre-lttrn 7785  ax-pre-apti 7786  ax-pre-ltadd 7787 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2692  df-sbc 2915  df-csb 3009  df-dif 3079  df-un 3081  df-in 3083  df-ss 3090  df-pw 3518  df-sn 3539  df-pr 3540  df-op 3542  df-uni 3746  df-int 3781  df-iun 3824  df-br 3939  df-opab 3999  df-mpt 4000  df-id 4225  df-xp 4556  df-rel 4557  df-cnv 4558  df-co 4559  df-dm 4560  df-rn 4561  df-res 4562  df-ima 4563  df-iota 5099  df-fun 5136  df-fn 5137  df-f 5138  df-fv 5142  df-riota 5741  df-ov 5788  df-oprab 5789  df-mpo 5790  df-1st 6049  df-2nd 6050  df-sup 6887  df-inf 6888  df-pnf 7853  df-mnf 7854  df-xr 7855  df-ltxr 7856  df-le 7857  df-sub 7986  df-neg 7987  df-inn 8772  df-n0 9029  df-z 9106  df-uz 9378  df-fz 9849  df-fzo 9978 This theorem is referenced by:  lcmledvds  11821
 Copyright terms: Public domain W3C validator