ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinclemex GIF version

Theorem ivthinclemex 14013
Description: Lemma for ivthinc 14014. Existence of a number between the lower cut and the upper cut. (Contributed by Jim Kingdon, 20-Feb-2024.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth.9 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
ivthinc.i (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
ivthinclem.l 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
ivthinclem.r 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
Assertion
Ref Expression
ivthinclemex (𝜑 → ∃!𝑧 ∈ (𝐴(,)𝐵)(∀𝑞𝐿 𝑞 < 𝑧 ∧ ∀𝑟𝑅 𝑧 < 𝑟))
Distinct variable groups:   𝐴,𝑞,𝑟,𝑤   𝑥,𝐴,𝑦,𝑞,𝑟   𝑧,𝐴,𝑞,𝑟   𝐵,𝑞,𝑟,𝑤   𝑥,𝐵,𝑦   𝑧,𝐵   𝑤,𝐹   𝑥,𝐹,𝑦   𝐿,𝑞,𝑟,𝑥,𝑦   𝑧,𝐿   𝑅,𝑞,𝑟,𝑥,𝑦   𝑧,𝑅   𝑤,𝑈   𝜑,𝑞,𝑟,𝑥,𝑦   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑟,𝑞)   𝑅(𝑤)   𝑈(𝑥,𝑦,𝑧,𝑟,𝑞)   𝐹(𝑧,𝑟,𝑞)   𝐿(𝑤)

Proof of Theorem ivthinclemex
StepHypRef Expression
1 ivth.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ivth.2 . 2 (𝜑𝐵 ∈ ℝ)
3 ivthinclem.l . . . 4 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
4 ssrab2 3240 . . . 4 {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈} ⊆ (𝐴[,]𝐵)
53, 4eqsstri 3187 . . 3 𝐿 ⊆ (𝐴[,]𝐵)
65a1i 9 . 2 (𝜑𝐿 ⊆ (𝐴[,]𝐵))
7 ivthinclem.r . . . 4 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
8 ssrab2 3240 . . . 4 {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)} ⊆ (𝐴[,]𝐵)
97, 8eqsstri 3187 . . 3 𝑅 ⊆ (𝐴[,]𝐵)
109a1i 9 . 2 (𝜑𝑅 ⊆ (𝐴[,]𝐵))
11 ivth.3 . . 3 (𝜑𝑈 ∈ ℝ)
12 ivth.4 . . 3 (𝜑𝐴 < 𝐵)
13 ivth.5 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
14 ivth.7 . . 3 (𝜑𝐹 ∈ (𝐷cn→ℂ))
15 ivth.8 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
16 ivth.9 . . 3 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
17 ivthinc.i . . 3 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
181, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemlm 14005 . 2 (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
191, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemum 14006 . 2 (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑅)
201, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemlr 14008 . 2 (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
211, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemur 14010 . 2 (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑅 ↔ ∃𝑞𝑅 𝑞 < 𝑟))
221, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemdisj 14011 . 2 (𝜑 → (𝐿𝑅) = ∅)
231, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemloc 14012 . 2 (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑅)))
241, 2, 6, 10, 18, 19, 20, 21, 22, 23, 12dedekindicc 14004 1 (𝜑 → ∃!𝑧 ∈ (𝐴(,)𝐵)(∀𝑞𝐿 𝑞 < 𝑧 ∧ ∀𝑟𝑅 𝑧 < 𝑟))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wral 2455  ∃!wreu 2457  {crab 2459  wss 3129   class class class wbr 4003  cfv 5216  (class class class)co 5874  cc 7808  cr 7809   < clt 7990  (,)cioo 9886  [,]cicc 9889  cnccncf 13950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928  ax-arch 7929  ax-caucvg 7930  ax-pre-suploc 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-isom 5225  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-map 6649  df-sup 6982  df-inf 6983  df-pnf 7992  df-mnf 7993  df-xr 7994  df-ltxr 7995  df-le 7996  df-sub 8128  df-neg 8129  df-reap 8530  df-ap 8537  df-div 8628  df-inn 8918  df-2 8976  df-3 8977  df-4 8978  df-n0 9175  df-z 9252  df-uz 9527  df-rp 9652  df-ioo 9890  df-icc 9893  df-seqfrec 10443  df-exp 10517  df-cj 10846  df-re 10847  df-im 10848  df-rsqrt 11002  df-abs 11003  df-cncf 13951
This theorem is referenced by:  ivthinc  14014
  Copyright terms: Public domain W3C validator