ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinclemex GIF version

Theorem ivthinclemex 15184
Description: Lemma for ivthinc 15185. Existence of a number between the lower cut and the upper cut. (Contributed by Jim Kingdon, 20-Feb-2024.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth.9 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
ivthinc.i (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
ivthinclem.l 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
ivthinclem.r 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
Assertion
Ref Expression
ivthinclemex (𝜑 → ∃!𝑧 ∈ (𝐴(,)𝐵)(∀𝑞𝐿 𝑞 < 𝑧 ∧ ∀𝑟𝑅 𝑧 < 𝑟))
Distinct variable groups:   𝐴,𝑞,𝑟,𝑤   𝑥,𝐴,𝑦,𝑞,𝑟   𝑧,𝐴,𝑞,𝑟   𝐵,𝑞,𝑟,𝑤   𝑥,𝐵,𝑦   𝑧,𝐵   𝑤,𝐹   𝑥,𝐹,𝑦   𝐿,𝑞,𝑟,𝑥,𝑦   𝑧,𝐿   𝑅,𝑞,𝑟,𝑥,𝑦   𝑧,𝑅   𝑤,𝑈   𝜑,𝑞,𝑟,𝑥,𝑦   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑟,𝑞)   𝑅(𝑤)   𝑈(𝑥,𝑦,𝑧,𝑟,𝑞)   𝐹(𝑧,𝑟,𝑞)   𝐿(𝑤)

Proof of Theorem ivthinclemex
StepHypRef Expression
1 ivth.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ivth.2 . 2 (𝜑𝐵 ∈ ℝ)
3 ivthinclem.l . . . 4 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
4 ssrab2 3282 . . . 4 {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈} ⊆ (𝐴[,]𝐵)
53, 4eqsstri 3229 . . 3 𝐿 ⊆ (𝐴[,]𝐵)
65a1i 9 . 2 (𝜑𝐿 ⊆ (𝐴[,]𝐵))
7 ivthinclem.r . . . 4 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
8 ssrab2 3282 . . . 4 {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)} ⊆ (𝐴[,]𝐵)
97, 8eqsstri 3229 . . 3 𝑅 ⊆ (𝐴[,]𝐵)
109a1i 9 . 2 (𝜑𝑅 ⊆ (𝐴[,]𝐵))
11 ivth.3 . . 3 (𝜑𝑈 ∈ ℝ)
12 ivth.4 . . 3 (𝜑𝐴 < 𝐵)
13 ivth.5 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
14 ivth.7 . . 3 (𝜑𝐹 ∈ (𝐷cn→ℂ))
15 ivth.8 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
16 ivth.9 . . 3 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
17 ivthinc.i . . 3 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
181, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemlm 15176 . 2 (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
191, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemum 15177 . 2 (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑅)
201, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemlr 15179 . 2 (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
211, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemur 15181 . 2 (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑅 ↔ ∃𝑞𝑅 𝑞 < 𝑟))
221, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemdisj 15182 . 2 (𝜑 → (𝐿𝑅) = ∅)
231, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemloc 15183 . 2 (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑅)))
241, 2, 6, 10, 18, 19, 20, 21, 22, 23, 12dedekindicc 15175 1 (𝜑 → ∃!𝑧 ∈ (𝐴(,)𝐵)(∀𝑞𝐿 𝑞 < 𝑧 ∧ ∀𝑟𝑅 𝑧 < 𝑟))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wral 2485  ∃!wreu 2487  {crab 2489  wss 3170   class class class wbr 4050  cfv 5279  (class class class)co 5956  cc 7938  cr 7939   < clt 8122  (,)cioo 10025  [,]cicc 10028  cnccncf 15112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-mulrcl 8039  ax-addcom 8040  ax-mulcom 8041  ax-addass 8042  ax-mulass 8043  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-1rid 8047  ax-0id 8048  ax-rnegex 8049  ax-precex 8050  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056  ax-pre-mulgt0 8057  ax-pre-mulext 8058  ax-arch 8059  ax-caucvg 8060  ax-pre-suploc 8061
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-po 4350  df-iso 4351  df-iord 4420  df-on 4422  df-ilim 4423  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-isom 5288  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-recs 6403  df-frec 6489  df-map 6749  df-sup 7100  df-inf 7101  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-reap 8663  df-ap 8670  df-div 8761  df-inn 9052  df-2 9110  df-3 9111  df-4 9112  df-n0 9311  df-z 9388  df-uz 9664  df-rp 9791  df-ioo 10029  df-icc 10032  df-seqfrec 10610  df-exp 10701  df-cj 11223  df-re 11224  df-im 11225  df-rsqrt 11379  df-abs 11380  df-cncf 15113
This theorem is referenced by:  ivthinc  15185
  Copyright terms: Public domain W3C validator