Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ivthinclemex | GIF version |
Description: Lemma for ivthinc 13261. Existence of a number between the lower cut and the upper cut. (Contributed by Jim Kingdon, 20-Feb-2024.) |
Ref | Expression |
---|---|
ivth.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ivth.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ivth.3 | ⊢ (𝜑 → 𝑈 ∈ ℝ) |
ivth.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
ivth.5 | ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) |
ivth.7 | ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) |
ivth.8 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
ivth.9 | ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) |
ivthinc.i | ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) |
ivthinclem.l | ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} |
ivthinclem.r | ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} |
Ref | Expression |
---|---|
ivthinclemex | ⊢ (𝜑 → ∃!𝑧 ∈ (𝐴(,)𝐵)(∀𝑞 ∈ 𝐿 𝑞 < 𝑧 ∧ ∀𝑟 ∈ 𝑅 𝑧 < 𝑟)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ivth.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ivth.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | ivthinclem.l | . . . 4 ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} | |
4 | ssrab2 3227 | . . . 4 ⊢ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} ⊆ (𝐴[,]𝐵) | |
5 | 3, 4 | eqsstri 3174 | . . 3 ⊢ 𝐿 ⊆ (𝐴[,]𝐵) |
6 | 5 | a1i 9 | . 2 ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) |
7 | ivthinclem.r | . . . 4 ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} | |
8 | ssrab2 3227 | . . . 4 ⊢ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} ⊆ (𝐴[,]𝐵) | |
9 | 7, 8 | eqsstri 3174 | . . 3 ⊢ 𝑅 ⊆ (𝐴[,]𝐵) |
10 | 9 | a1i 9 | . 2 ⊢ (𝜑 → 𝑅 ⊆ (𝐴[,]𝐵)) |
11 | ivth.3 | . . 3 ⊢ (𝜑 → 𝑈 ∈ ℝ) | |
12 | ivth.4 | . . 3 ⊢ (𝜑 → 𝐴 < 𝐵) | |
13 | ivth.5 | . . 3 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) | |
14 | ivth.7 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) | |
15 | ivth.8 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) | |
16 | ivth.9 | . . 3 ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) | |
17 | ivthinc.i | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) | |
18 | 1, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7 | ivthinclemlm 13252 | . 2 ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) |
19 | 1, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7 | ivthinclemum 13253 | . 2 ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑅) |
20 | 1, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7 | ivthinclemlr 13255 | . 2 ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
21 | 1, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7 | ivthinclemur 13257 | . 2 ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑅 ↔ ∃𝑞 ∈ 𝑅 𝑞 < 𝑟)) |
22 | 1, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7 | ivthinclemdisj 13258 | . 2 ⊢ (𝜑 → (𝐿 ∩ 𝑅) = ∅) |
23 | 1, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7 | ivthinclemloc 13259 | . 2 ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑅))) |
24 | 1, 2, 6, 10, 18, 19, 20, 21, 22, 23, 12 | dedekindicc 13251 | 1 ⊢ (𝜑 → ∃!𝑧 ∈ (𝐴(,)𝐵)(∀𝑞 ∈ 𝐿 𝑞 < 𝑧 ∧ ∀𝑟 ∈ 𝑅 𝑧 < 𝑟)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ∀wral 2444 ∃!wreu 2446 {crab 2448 ⊆ wss 3116 class class class wbr 3982 ‘cfv 5188 (class class class)co 5842 ℂcc 7751 ℝcr 7752 < clt 7933 (,)cioo 9824 [,]cicc 9827 –cn→ccncf 13197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 ax-pre-suploc 7874 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-map 6616 df-sup 6949 df-inf 6950 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-rp 9590 df-ioo 9828 df-icc 9831 df-seqfrec 10381 df-exp 10455 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-cncf 13198 |
This theorem is referenced by: ivthinc 13261 |
Copyright terms: Public domain | W3C validator |