| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ivthinclemex | GIF version | ||
| Description: Lemma for ivthinc 15185. Existence of a number between the lower cut and the upper cut. (Contributed by Jim Kingdon, 20-Feb-2024.) |
| Ref | Expression |
|---|---|
| ivth.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ivth.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ivth.3 | ⊢ (𝜑 → 𝑈 ∈ ℝ) |
| ivth.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
| ivth.5 | ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) |
| ivth.7 | ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) |
| ivth.8 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
| ivth.9 | ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) |
| ivthinc.i | ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) |
| ivthinclem.l | ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} |
| ivthinclem.r | ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} |
| Ref | Expression |
|---|---|
| ivthinclemex | ⊢ (𝜑 → ∃!𝑧 ∈ (𝐴(,)𝐵)(∀𝑞 ∈ 𝐿 𝑞 < 𝑧 ∧ ∀𝑟 ∈ 𝑅 𝑧 < 𝑟)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ivth.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ivth.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | ivthinclem.l | . . . 4 ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} | |
| 4 | ssrab2 3282 | . . . 4 ⊢ {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} ⊆ (𝐴[,]𝐵) | |
| 5 | 3, 4 | eqsstri 3229 | . . 3 ⊢ 𝐿 ⊆ (𝐴[,]𝐵) |
| 6 | 5 | a1i 9 | . 2 ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) |
| 7 | ivthinclem.r | . . . 4 ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} | |
| 8 | ssrab2 3282 | . . . 4 ⊢ {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} ⊆ (𝐴[,]𝐵) | |
| 9 | 7, 8 | eqsstri 3229 | . . 3 ⊢ 𝑅 ⊆ (𝐴[,]𝐵) |
| 10 | 9 | a1i 9 | . 2 ⊢ (𝜑 → 𝑅 ⊆ (𝐴[,]𝐵)) |
| 11 | ivth.3 | . . 3 ⊢ (𝜑 → 𝑈 ∈ ℝ) | |
| 12 | ivth.4 | . . 3 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 13 | ivth.5 | . . 3 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) | |
| 14 | ivth.7 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) | |
| 15 | ivth.8 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) | |
| 16 | ivth.9 | . . 3 ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) | |
| 17 | ivthinc.i | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) | |
| 18 | 1, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7 | ivthinclemlm 15176 | . 2 ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) |
| 19 | 1, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7 | ivthinclemum 15177 | . 2 ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑅) |
| 20 | 1, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7 | ivthinclemlr 15179 | . 2 ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
| 21 | 1, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7 | ivthinclemur 15181 | . 2 ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑅 ↔ ∃𝑞 ∈ 𝑅 𝑞 < 𝑟)) |
| 22 | 1, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7 | ivthinclemdisj 15182 | . 2 ⊢ (𝜑 → (𝐿 ∩ 𝑅) = ∅) |
| 23 | 1, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7 | ivthinclemloc 15183 | . 2 ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑅))) |
| 24 | 1, 2, 6, 10, 18, 19, 20, 21, 22, 23, 12 | dedekindicc 15175 | 1 ⊢ (𝜑 → ∃!𝑧 ∈ (𝐴(,)𝐵)(∀𝑞 ∈ 𝐿 𝑞 < 𝑧 ∧ ∀𝑟 ∈ 𝑅 𝑧 < 𝑟)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ∃!wreu 2487 {crab 2489 ⊆ wss 3170 class class class wbr 4050 ‘cfv 5279 (class class class)co 5956 ℂcc 7938 ℝcr 7939 < clt 8122 (,)cioo 10025 [,]cicc 10028 –cn→ccncf 15112 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-iinf 4643 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-mulrcl 8039 ax-addcom 8040 ax-mulcom 8041 ax-addass 8042 ax-mulass 8043 ax-distr 8044 ax-i2m1 8045 ax-0lt1 8046 ax-1rid 8047 ax-0id 8048 ax-rnegex 8049 ax-precex 8050 ax-cnre 8051 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 ax-pre-apti 8055 ax-pre-ltadd 8056 ax-pre-mulgt0 8057 ax-pre-mulext 8058 ax-arch 8059 ax-caucvg 8060 ax-pre-suploc 8061 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-id 4347 df-po 4350 df-iso 4351 df-iord 4420 df-on 4422 df-ilim 4423 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-isom 5288 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-recs 6403 df-frec 6489 df-map 6749 df-sup 7100 df-inf 7101 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-sub 8260 df-neg 8261 df-reap 8663 df-ap 8670 df-div 8761 df-inn 9052 df-2 9110 df-3 9111 df-4 9112 df-n0 9311 df-z 9388 df-uz 9664 df-rp 9791 df-ioo 10029 df-icc 10032 df-seqfrec 10610 df-exp 10701 df-cj 11223 df-re 11224 df-im 11225 df-rsqrt 11379 df-abs 11380 df-cncf 15113 |
| This theorem is referenced by: ivthinc 15185 |
| Copyright terms: Public domain | W3C validator |