![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltexpi | GIF version |
Description: Ordering on positive integers in terms of existence of sum. (Contributed by NM, 15-Mar-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) |
Ref | Expression |
---|---|
ltexpi | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ ∃𝑥 ∈ N (𝐴 +N 𝑥) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pinn 7308 | . . 3 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
2 | pinn 7308 | . . 3 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
3 | nnaordex 6529 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))) | |
4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))) |
5 | ltpiord 7318 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
6 | addpiord 7315 | . . . . . . 7 ⊢ ((𝐴 ∈ N ∧ 𝑥 ∈ N) → (𝐴 +N 𝑥) = (𝐴 +o 𝑥)) | |
7 | 6 | eqeq1d 2186 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝑥 ∈ N) → ((𝐴 +N 𝑥) = 𝐵 ↔ (𝐴 +o 𝑥) = 𝐵)) |
8 | 7 | pm5.32da 452 | . . . . 5 ⊢ (𝐴 ∈ N → ((𝑥 ∈ N ∧ (𝐴 +N 𝑥) = 𝐵) ↔ (𝑥 ∈ N ∧ (𝐴 +o 𝑥) = 𝐵))) |
9 | elni2 7313 | . . . . . . 7 ⊢ (𝑥 ∈ N ↔ (𝑥 ∈ ω ∧ ∅ ∈ 𝑥)) | |
10 | 9 | anbi1i 458 | . . . . . 6 ⊢ ((𝑥 ∈ N ∧ (𝐴 +o 𝑥) = 𝐵) ↔ ((𝑥 ∈ ω ∧ ∅ ∈ 𝑥) ∧ (𝐴 +o 𝑥) = 𝐵)) |
11 | anass 401 | . . . . . 6 ⊢ (((𝑥 ∈ ω ∧ ∅ ∈ 𝑥) ∧ (𝐴 +o 𝑥) = 𝐵) ↔ (𝑥 ∈ ω ∧ (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))) | |
12 | 10, 11 | bitri 184 | . . . . 5 ⊢ ((𝑥 ∈ N ∧ (𝐴 +o 𝑥) = 𝐵) ↔ (𝑥 ∈ ω ∧ (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))) |
13 | 8, 12 | bitrdi 196 | . . . 4 ⊢ (𝐴 ∈ N → ((𝑥 ∈ N ∧ (𝐴 +N 𝑥) = 𝐵) ↔ (𝑥 ∈ ω ∧ (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))) |
14 | 13 | rexbidv2 2480 | . . 3 ⊢ (𝐴 ∈ N → (∃𝑥 ∈ N (𝐴 +N 𝑥) = 𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))) |
15 | 14 | adantr 276 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (∃𝑥 ∈ N (𝐴 +N 𝑥) = 𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))) |
16 | 4, 5, 15 | 3bitr4d 220 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ ∃𝑥 ∈ N (𝐴 +N 𝑥) = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ∃wrex 2456 ∅c0 3423 class class class wbr 4004 ωcom 4590 (class class class)co 5875 +o coa 6414 Ncnpi 7271 +N cpli 7272 <N clti 7274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4119 ax-sep 4122 ax-nul 4130 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-iinf 4588 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-tr 4103 df-eprel 4290 df-id 4294 df-iord 4367 df-on 4369 df-suc 4372 df-iom 4591 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-fv 5225 df-ov 5878 df-oprab 5879 df-mpo 5880 df-1st 6141 df-2nd 6142 df-recs 6306 df-irdg 6371 df-1o 6417 df-oadd 6421 df-ni 7303 df-pli 7304 df-lti 7306 |
This theorem is referenced by: ltexnqq 7407 |
Copyright terms: Public domain | W3C validator |