ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltapig GIF version

Theorem ltapig 6818
Description: Ordering property of addition for positive integers. (Contributed by Jim Kingdon, 31-Aug-2019.)
Assertion
Ref Expression
ltapig ((𝐴N𝐵N𝐶N) → (𝐴 <N 𝐵 ↔ (𝐶 +N 𝐴) <N (𝐶 +N 𝐵)))

Proof of Theorem ltapig
StepHypRef Expression
1 pinn 6789 . . . . 5 (𝐴N𝐴 ∈ ω)
2 pinn 6789 . . . . 5 (𝐵N𝐵 ∈ ω)
3 pinn 6789 . . . . 5 (𝐶N𝐶 ∈ ω)
4 nnaord 6201 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
51, 2, 3, 4syl3an 1214 . . . 4 ((𝐴N𝐵N𝐶N) → (𝐴𝐵 ↔ (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
653expa 1141 . . 3 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴𝐵 ↔ (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
7 ltpiord 6799 . . . 4 ((𝐴N𝐵N) → (𝐴 <N 𝐵𝐴𝐵))
87adantr 270 . . 3 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 <N 𝐵𝐴𝐵))
9 addclpi 6807 . . . . . . 7 ((𝐶N𝐴N) → (𝐶 +N 𝐴) ∈ N)
10 addclpi 6807 . . . . . . 7 ((𝐶N𝐵N) → (𝐶 +N 𝐵) ∈ N)
11 ltpiord 6799 . . . . . . 7 (((𝐶 +N 𝐴) ∈ N ∧ (𝐶 +N 𝐵) ∈ N) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +N 𝐴) ∈ (𝐶 +N 𝐵)))
129, 10, 11syl2an 283 . . . . . 6 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +N 𝐴) ∈ (𝐶 +N 𝐵)))
13 addpiord 6796 . . . . . . . 8 ((𝐶N𝐴N) → (𝐶 +N 𝐴) = (𝐶 +𝑜 𝐴))
1413adantr 270 . . . . . . 7 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → (𝐶 +N 𝐴) = (𝐶 +𝑜 𝐴))
15 addpiord 6796 . . . . . . . 8 ((𝐶N𝐵N) → (𝐶 +N 𝐵) = (𝐶 +𝑜 𝐵))
1615adantl 271 . . . . . . 7 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → (𝐶 +N 𝐵) = (𝐶 +𝑜 𝐵))
1714, 16eleq12d 2155 . . . . . 6 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → ((𝐶 +N 𝐴) ∈ (𝐶 +N 𝐵) ↔ (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
1812, 17bitrd 186 . . . . 5 (((𝐶N𝐴N) ∧ (𝐶N𝐵N)) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
1918anandis 557 . . . 4 ((𝐶N ∧ (𝐴N𝐵N)) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
2019ancoms 264 . . 3 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
216, 8, 203bitr4d 218 . 2 (((𝐴N𝐵N) ∧ 𝐶N) → (𝐴 <N 𝐵 ↔ (𝐶 +N 𝐴) <N (𝐶 +N 𝐵)))
22213impa 1136 1 ((𝐴N𝐵N𝐶N) → (𝐴 <N 𝐵 ↔ (𝐶 +N 𝐴) <N (𝐶 +N 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 922   = wceq 1287  wcel 1436   class class class wbr 3814  ωcom 4371  (class class class)co 5594   +𝑜 coa 6113  Ncnpi 6752   +N cpli 6753   <N clti 6755
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3922  ax-sep 3925  ax-nul 3933  ax-pow 3977  ax-pr 4003  ax-un 4227  ax-setind 4319  ax-iinf 4369
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2616  df-sbc 2829  df-csb 2922  df-dif 2988  df-un 2990  df-in 2992  df-ss 2999  df-nul 3273  df-pw 3411  df-sn 3431  df-pr 3432  df-op 3434  df-uni 3631  df-int 3666  df-iun 3709  df-br 3815  df-opab 3869  df-mpt 3870  df-tr 3905  df-eprel 4083  df-id 4087  df-iord 4160  df-on 4162  df-suc 4165  df-iom 4372  df-xp 4410  df-rel 4411  df-cnv 4412  df-co 4413  df-dm 4414  df-rn 4415  df-res 4416  df-ima 4417  df-iota 4937  df-fun 4974  df-fn 4975  df-f 4976  df-f1 4977  df-fo 4978  df-f1o 4979  df-fv 4980  df-ov 5597  df-oprab 5598  df-mpt2 5599  df-1st 5849  df-2nd 5850  df-recs 6005  df-irdg 6070  df-oadd 6120  df-ni 6784  df-pli 6785  df-lti 6787
This theorem is referenced by:  ltanqg  6880
  Copyright terms: Public domain W3C validator