![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltapig | GIF version |
Description: Ordering property of addition for positive integers. (Contributed by Jim Kingdon, 31-Aug-2019.) |
Ref | Expression |
---|---|
ltapig | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐴 <N 𝐵 ↔ (𝐶 +N 𝐴) <N (𝐶 +N 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pinn 7369 | . . . . 5 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
2 | pinn 7369 | . . . . 5 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
3 | pinn 7369 | . . . . 5 ⊢ (𝐶 ∈ N → 𝐶 ∈ ω) | |
4 | nnaord 6562 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ∈ 𝐵 ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))) | |
5 | 1, 2, 3, 4 | syl3an 1291 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐴 ∈ 𝐵 ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))) |
6 | 5 | 3expa 1205 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → (𝐴 ∈ 𝐵 ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))) |
7 | ltpiord 7379 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
8 | 7 | adantr 276 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → (𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵)) |
9 | addclpi 7387 | . . . . . . 7 ⊢ ((𝐶 ∈ N ∧ 𝐴 ∈ N) → (𝐶 +N 𝐴) ∈ N) | |
10 | addclpi 7387 | . . . . . . 7 ⊢ ((𝐶 ∈ N ∧ 𝐵 ∈ N) → (𝐶 +N 𝐵) ∈ N) | |
11 | ltpiord 7379 | . . . . . . 7 ⊢ (((𝐶 +N 𝐴) ∈ N ∧ (𝐶 +N 𝐵) ∈ N) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +N 𝐴) ∈ (𝐶 +N 𝐵))) | |
12 | 9, 10, 11 | syl2an 289 | . . . . . 6 ⊢ (((𝐶 ∈ N ∧ 𝐴 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐵 ∈ N)) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +N 𝐴) ∈ (𝐶 +N 𝐵))) |
13 | addpiord 7376 | . . . . . . . 8 ⊢ ((𝐶 ∈ N ∧ 𝐴 ∈ N) → (𝐶 +N 𝐴) = (𝐶 +o 𝐴)) | |
14 | 13 | adantr 276 | . . . . . . 7 ⊢ (((𝐶 ∈ N ∧ 𝐴 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐵 ∈ N)) → (𝐶 +N 𝐴) = (𝐶 +o 𝐴)) |
15 | addpiord 7376 | . . . . . . . 8 ⊢ ((𝐶 ∈ N ∧ 𝐵 ∈ N) → (𝐶 +N 𝐵) = (𝐶 +o 𝐵)) | |
16 | 15 | adantl 277 | . . . . . . 7 ⊢ (((𝐶 ∈ N ∧ 𝐴 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐵 ∈ N)) → (𝐶 +N 𝐵) = (𝐶 +o 𝐵)) |
17 | 14, 16 | eleq12d 2264 | . . . . . 6 ⊢ (((𝐶 ∈ N ∧ 𝐴 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐵 ∈ N)) → ((𝐶 +N 𝐴) ∈ (𝐶 +N 𝐵) ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))) |
18 | 12, 17 | bitrd 188 | . . . . 5 ⊢ (((𝐶 ∈ N ∧ 𝐴 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐵 ∈ N)) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))) |
19 | 18 | anandis 592 | . . . 4 ⊢ ((𝐶 ∈ N ∧ (𝐴 ∈ N ∧ 𝐵 ∈ N)) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))) |
20 | 19 | ancoms 268 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))) |
21 | 6, 8, 20 | 3bitr4d 220 | . 2 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → (𝐴 <N 𝐵 ↔ (𝐶 +N 𝐴) <N (𝐶 +N 𝐵))) |
22 | 21 | 3impa 1196 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐴 <N 𝐵 ↔ (𝐶 +N 𝐴) <N (𝐶 +N 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 ωcom 4622 (class class class)co 5918 +o coa 6466 Ncnpi 7332 +N cpli 7333 <N clti 7335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-eprel 4320 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-oadd 6473 df-ni 7364 df-pli 7365 df-lti 7367 |
This theorem is referenced by: ltanqg 7460 |
Copyright terms: Public domain | W3C validator |