![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltapig | GIF version |
Description: Ordering property of addition for positive integers. (Contributed by Jim Kingdon, 31-Aug-2019.) |
Ref | Expression |
---|---|
ltapig | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐴 <N 𝐵 ↔ (𝐶 +N 𝐴) <N (𝐶 +N 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pinn 7058 | . . . . 5 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
2 | pinn 7058 | . . . . 5 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
3 | pinn 7058 | . . . . 5 ⊢ (𝐶 ∈ N → 𝐶 ∈ ω) | |
4 | nnaord 6356 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ∈ 𝐵 ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))) | |
5 | 1, 2, 3, 4 | syl3an 1239 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐴 ∈ 𝐵 ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))) |
6 | 5 | 3expa 1162 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → (𝐴 ∈ 𝐵 ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))) |
7 | ltpiord 7068 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
8 | 7 | adantr 272 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → (𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵)) |
9 | addclpi 7076 | . . . . . . 7 ⊢ ((𝐶 ∈ N ∧ 𝐴 ∈ N) → (𝐶 +N 𝐴) ∈ N) | |
10 | addclpi 7076 | . . . . . . 7 ⊢ ((𝐶 ∈ N ∧ 𝐵 ∈ N) → (𝐶 +N 𝐵) ∈ N) | |
11 | ltpiord 7068 | . . . . . . 7 ⊢ (((𝐶 +N 𝐴) ∈ N ∧ (𝐶 +N 𝐵) ∈ N) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +N 𝐴) ∈ (𝐶 +N 𝐵))) | |
12 | 9, 10, 11 | syl2an 285 | . . . . . 6 ⊢ (((𝐶 ∈ N ∧ 𝐴 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐵 ∈ N)) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +N 𝐴) ∈ (𝐶 +N 𝐵))) |
13 | addpiord 7065 | . . . . . . . 8 ⊢ ((𝐶 ∈ N ∧ 𝐴 ∈ N) → (𝐶 +N 𝐴) = (𝐶 +o 𝐴)) | |
14 | 13 | adantr 272 | . . . . . . 7 ⊢ (((𝐶 ∈ N ∧ 𝐴 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐵 ∈ N)) → (𝐶 +N 𝐴) = (𝐶 +o 𝐴)) |
15 | addpiord 7065 | . . . . . . . 8 ⊢ ((𝐶 ∈ N ∧ 𝐵 ∈ N) → (𝐶 +N 𝐵) = (𝐶 +o 𝐵)) | |
16 | 15 | adantl 273 | . . . . . . 7 ⊢ (((𝐶 ∈ N ∧ 𝐴 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐵 ∈ N)) → (𝐶 +N 𝐵) = (𝐶 +o 𝐵)) |
17 | 14, 16 | eleq12d 2183 | . . . . . 6 ⊢ (((𝐶 ∈ N ∧ 𝐴 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐵 ∈ N)) → ((𝐶 +N 𝐴) ∈ (𝐶 +N 𝐵) ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))) |
18 | 12, 17 | bitrd 187 | . . . . 5 ⊢ (((𝐶 ∈ N ∧ 𝐴 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐵 ∈ N)) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))) |
19 | 18 | anandis 564 | . . . 4 ⊢ ((𝐶 ∈ N ∧ (𝐴 ∈ N ∧ 𝐵 ∈ N)) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))) |
20 | 19 | ancoms 266 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))) |
21 | 6, 8, 20 | 3bitr4d 219 | . 2 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → (𝐴 <N 𝐵 ↔ (𝐶 +N 𝐴) <N (𝐶 +N 𝐵))) |
22 | 21 | 3impa 1157 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐴 <N 𝐵 ↔ (𝐶 +N 𝐴) <N (𝐶 +N 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 943 = wceq 1312 ∈ wcel 1461 class class class wbr 3893 ωcom 4462 (class class class)co 5726 +o coa 6261 Ncnpi 7021 +N cpli 7022 <N clti 7024 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-coll 4001 ax-sep 4004 ax-nul 4012 ax-pow 4056 ax-pr 4089 ax-un 4313 ax-setind 4410 ax-iinf 4460 |
This theorem depends on definitions: df-bi 116 df-dc 803 df-3or 944 df-3an 945 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-ral 2393 df-rex 2394 df-reu 2395 df-rab 2397 df-v 2657 df-sbc 2877 df-csb 2970 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-nul 3328 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-int 3736 df-iun 3779 df-br 3894 df-opab 3948 df-mpt 3949 df-tr 3985 df-eprel 4169 df-id 4173 df-iord 4246 df-on 4248 df-suc 4251 df-iom 4463 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-res 4509 df-ima 4510 df-iota 5044 df-fun 5081 df-fn 5082 df-f 5083 df-f1 5084 df-fo 5085 df-f1o 5086 df-fv 5087 df-ov 5729 df-oprab 5730 df-mpo 5731 df-1st 5989 df-2nd 5990 df-recs 6153 df-irdg 6218 df-oadd 6268 df-ni 7053 df-pli 7054 df-lti 7056 |
This theorem is referenced by: ltanqg 7149 |
Copyright terms: Public domain | W3C validator |