![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltapig | GIF version |
Description: Ordering property of addition for positive integers. (Contributed by Jim Kingdon, 31-Aug-2019.) |
Ref | Expression |
---|---|
ltapig | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐴 <N 𝐵 ↔ (𝐶 +N 𝐴) <N (𝐶 +N 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pinn 7371 | . . . . 5 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
2 | pinn 7371 | . . . . 5 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
3 | pinn 7371 | . . . . 5 ⊢ (𝐶 ∈ N → 𝐶 ∈ ω) | |
4 | nnaord 6564 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ∈ 𝐵 ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))) | |
5 | 1, 2, 3, 4 | syl3an 1291 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐴 ∈ 𝐵 ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))) |
6 | 5 | 3expa 1205 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → (𝐴 ∈ 𝐵 ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))) |
7 | ltpiord 7381 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
8 | 7 | adantr 276 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → (𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵)) |
9 | addclpi 7389 | . . . . . . 7 ⊢ ((𝐶 ∈ N ∧ 𝐴 ∈ N) → (𝐶 +N 𝐴) ∈ N) | |
10 | addclpi 7389 | . . . . . . 7 ⊢ ((𝐶 ∈ N ∧ 𝐵 ∈ N) → (𝐶 +N 𝐵) ∈ N) | |
11 | ltpiord 7381 | . . . . . . 7 ⊢ (((𝐶 +N 𝐴) ∈ N ∧ (𝐶 +N 𝐵) ∈ N) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +N 𝐴) ∈ (𝐶 +N 𝐵))) | |
12 | 9, 10, 11 | syl2an 289 | . . . . . 6 ⊢ (((𝐶 ∈ N ∧ 𝐴 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐵 ∈ N)) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +N 𝐴) ∈ (𝐶 +N 𝐵))) |
13 | addpiord 7378 | . . . . . . . 8 ⊢ ((𝐶 ∈ N ∧ 𝐴 ∈ N) → (𝐶 +N 𝐴) = (𝐶 +o 𝐴)) | |
14 | 13 | adantr 276 | . . . . . . 7 ⊢ (((𝐶 ∈ N ∧ 𝐴 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐵 ∈ N)) → (𝐶 +N 𝐴) = (𝐶 +o 𝐴)) |
15 | addpiord 7378 | . . . . . . . 8 ⊢ ((𝐶 ∈ N ∧ 𝐵 ∈ N) → (𝐶 +N 𝐵) = (𝐶 +o 𝐵)) | |
16 | 15 | adantl 277 | . . . . . . 7 ⊢ (((𝐶 ∈ N ∧ 𝐴 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐵 ∈ N)) → (𝐶 +N 𝐵) = (𝐶 +o 𝐵)) |
17 | 14, 16 | eleq12d 2264 | . . . . . 6 ⊢ (((𝐶 ∈ N ∧ 𝐴 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐵 ∈ N)) → ((𝐶 +N 𝐴) ∈ (𝐶 +N 𝐵) ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))) |
18 | 12, 17 | bitrd 188 | . . . . 5 ⊢ (((𝐶 ∈ N ∧ 𝐴 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐵 ∈ N)) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))) |
19 | 18 | anandis 592 | . . . 4 ⊢ ((𝐶 ∈ N ∧ (𝐴 ∈ N ∧ 𝐵 ∈ N)) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))) |
20 | 19 | ancoms 268 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → ((𝐶 +N 𝐴) <N (𝐶 +N 𝐵) ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))) |
21 | 6, 8, 20 | 3bitr4d 220 | . 2 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ 𝐶 ∈ N) → (𝐴 <N 𝐵 ↔ (𝐶 +N 𝐴) <N (𝐶 +N 𝐵))) |
22 | 21 | 3impa 1196 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐴 <N 𝐵 ↔ (𝐶 +N 𝐴) <N (𝐶 +N 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 ωcom 4623 (class class class)co 5919 +o coa 6468 Ncnpi 7334 +N cpli 7335 <N clti 7337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-eprel 4321 df-id 4325 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-oadd 6475 df-ni 7366 df-pli 7367 df-lti 7369 |
This theorem is referenced by: ltanqg 7462 |
Copyright terms: Public domain | W3C validator |