Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fsumsersdc | GIF version |
Description: Special case of series sum over a finite upper integer index set. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Jim Kingdon, 5-May-2023.) |
Ref | Expression |
---|---|
fsumsers.1 | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) |
fsumsers.2 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
fsumsers.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
fsumsers.dc | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID 𝑘 ∈ 𝐴) |
fsumsers.4 | ⊢ (𝜑 → 𝐴 ⊆ (𝑀...𝑁)) |
Ref | Expression |
---|---|
fsumsersdc | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = (seq𝑀( + , 𝐹)‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2165 | . . 3 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
2 | fsumsers.2 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
3 | eluzel2 9471 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
4 | 2, 3 | syl 14 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
5 | fsumsers.4 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ (𝑀...𝑁)) | |
6 | fzssuz 10000 | . . . 4 ⊢ (𝑀...𝑁) ⊆ (ℤ≥‘𝑀) | |
7 | 5, 6 | sstrdi 3154 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) |
8 | fsumsers.1 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) | |
9 | fsumsers.dc | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID 𝑘 ∈ 𝐴) | |
10 | 9 | ralrimiva 2539 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑀)DECID 𝑘 ∈ 𝐴) |
11 | eleq1w 2227 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴)) | |
12 | 11 | dcbid 828 | . . . . 5 ⊢ (𝑘 = 𝑗 → (DECID 𝑘 ∈ 𝐴 ↔ DECID 𝑗 ∈ 𝐴)) |
13 | 12 | cbvralv 2692 | . . . 4 ⊢ (∀𝑘 ∈ (ℤ≥‘𝑀)DECID 𝑘 ∈ 𝐴 ↔ ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) |
14 | 10, 13 | sylib 121 | . . 3 ⊢ (𝜑 → ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) |
15 | fsumsers.3 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
16 | 1, 4, 7, 8, 14, 15 | zsumdc 11325 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹))) |
17 | fclim 11235 | . . . 4 ⊢ ⇝ :dom ⇝ ⟶ℂ | |
18 | ffun 5340 | . . . 4 ⊢ ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ ) | |
19 | 17, 18 | ax-mp 5 | . . 3 ⊢ Fun ⇝ |
20 | 8, 2, 15, 9, 5 | fsum3cvg2 11335 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑁)) |
21 | funbrfv 5525 | . . 3 ⊢ (Fun ⇝ → (seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑁) → ( ⇝ ‘seq𝑀( + , 𝐹)) = (seq𝑀( + , 𝐹)‘𝑁))) | |
22 | 19, 20, 21 | mpsyl 65 | . 2 ⊢ (𝜑 → ( ⇝ ‘seq𝑀( + , 𝐹)) = (seq𝑀( + , 𝐹)‘𝑁)) |
23 | 16, 22 | eqtrd 2198 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = (seq𝑀( + , 𝐹)‘𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 DECID wdc 824 = wceq 1343 ∈ wcel 2136 ∀wral 2444 ⊆ wss 3116 ifcif 3520 class class class wbr 3982 dom cdm 4604 Fun wfun 5182 ⟶wf 5184 ‘cfv 5188 (class class class)co 5842 ℂcc 7751 0cc0 7753 + caddc 7756 ℤcz 9191 ℤ≥cuz 9466 ...cfz 9944 seqcseq 10380 ⇝ cli 11219 Σcsu 11294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-frec 6359 df-1o 6384 df-oadd 6388 df-er 6501 df-en 6707 df-dom 6708 df-fin 6709 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-fz 9945 df-fzo 10078 df-seqfrec 10381 df-exp 10455 df-ihash 10689 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-clim 11220 df-sumdc 11295 |
This theorem is referenced by: fsum3ser 11338 |
Copyright terms: Public domain | W3C validator |