Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fsumsersdc | GIF version |
Description: Special case of series sum over a finite upper integer index set. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Jim Kingdon, 5-May-2023.) |
Ref | Expression |
---|---|
fsumsers.1 | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) |
fsumsers.2 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
fsumsers.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
fsumsers.dc | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID 𝑘 ∈ 𝐴) |
fsumsers.4 | ⊢ (𝜑 → 𝐴 ⊆ (𝑀...𝑁)) |
Ref | Expression |
---|---|
fsumsersdc | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = (seq𝑀( + , 𝐹)‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2170 | . . 3 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
2 | fsumsers.2 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
3 | eluzel2 9479 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
4 | 2, 3 | syl 14 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
5 | fsumsers.4 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ (𝑀...𝑁)) | |
6 | fzssuz 10008 | . . . 4 ⊢ (𝑀...𝑁) ⊆ (ℤ≥‘𝑀) | |
7 | 5, 6 | sstrdi 3159 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) |
8 | fsumsers.1 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) | |
9 | fsumsers.dc | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID 𝑘 ∈ 𝐴) | |
10 | 9 | ralrimiva 2543 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑀)DECID 𝑘 ∈ 𝐴) |
11 | eleq1w 2231 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴)) | |
12 | 11 | dcbid 833 | . . . . 5 ⊢ (𝑘 = 𝑗 → (DECID 𝑘 ∈ 𝐴 ↔ DECID 𝑗 ∈ 𝐴)) |
13 | 12 | cbvralv 2696 | . . . 4 ⊢ (∀𝑘 ∈ (ℤ≥‘𝑀)DECID 𝑘 ∈ 𝐴 ↔ ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) |
14 | 10, 13 | sylib 121 | . . 3 ⊢ (𝜑 → ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) |
15 | fsumsers.3 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
16 | 1, 4, 7, 8, 14, 15 | zsumdc 11334 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹))) |
17 | fclim 11244 | . . . 4 ⊢ ⇝ :dom ⇝ ⟶ℂ | |
18 | ffun 5348 | . . . 4 ⊢ ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ ) | |
19 | 17, 18 | ax-mp 5 | . . 3 ⊢ Fun ⇝ |
20 | 8, 2, 15, 9, 5 | fsum3cvg2 11344 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑁)) |
21 | funbrfv 5533 | . . 3 ⊢ (Fun ⇝ → (seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑁) → ( ⇝ ‘seq𝑀( + , 𝐹)) = (seq𝑀( + , 𝐹)‘𝑁))) | |
22 | 19, 20, 21 | mpsyl 65 | . 2 ⊢ (𝜑 → ( ⇝ ‘seq𝑀( + , 𝐹)) = (seq𝑀( + , 𝐹)‘𝑁)) |
23 | 16, 22 | eqtrd 2203 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = (seq𝑀( + , 𝐹)‘𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 DECID wdc 829 = wceq 1348 ∈ wcel 2141 ∀wral 2448 ⊆ wss 3121 ifcif 3525 class class class wbr 3987 dom cdm 4609 Fun wfun 5190 ⟶wf 5192 ‘cfv 5196 (class class class)co 5850 ℂcc 7759 0cc0 7761 + caddc 7764 ℤcz 9199 ℤ≥cuz 9474 ...cfz 9952 seqcseq 10388 ⇝ cli 11228 Σcsu 11303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-mulrcl 7860 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-precex 7871 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-apti 7876 ax-pre-ltadd 7877 ax-pre-mulgt0 7878 ax-pre-mulext 7879 ax-arch 7880 ax-caucvg 7881 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-isom 5205 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-recs 6281 df-irdg 6346 df-frec 6367 df-1o 6392 df-oadd 6396 df-er 6509 df-en 6715 df-dom 6716 df-fin 6717 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-reap 8481 df-ap 8488 df-div 8577 df-inn 8866 df-2 8924 df-3 8925 df-4 8926 df-n0 9123 df-z 9200 df-uz 9475 df-q 9566 df-rp 9598 df-fz 9953 df-fzo 10086 df-seqfrec 10389 df-exp 10463 df-ihash 10697 df-cj 10793 df-re 10794 df-im 10795 df-rsqrt 10949 df-abs 10950 df-clim 11229 df-sumdc 11304 |
This theorem is referenced by: fsum3ser 11347 |
Copyright terms: Public domain | W3C validator |