![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isumclim | GIF version |
Description: An infinite sum equals the value its series converges to. (Contributed by NM, 25-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2014.) |
Ref | Expression |
---|---|
isumclim.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
isumclim.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
isumclim.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
isumclim.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
isumclim.6 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐵) |
Ref | Expression |
---|---|
isumclim | ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumclim.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | isumclim.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | isumclim.3 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
4 | isumclim.4 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) | |
5 | 1, 2, 3, 4 | isum 11428 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = ( ⇝ ‘seq𝑀( + , 𝐹))) |
6 | fclim 11337 | . . . 4 ⊢ ⇝ :dom ⇝ ⟶ℂ | |
7 | ffun 5387 | . . . 4 ⊢ ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ ) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ Fun ⇝ |
9 | isumclim.6 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐵) | |
10 | funbrfv 5575 | . . 3 ⊢ (Fun ⇝ → (seq𝑀( + , 𝐹) ⇝ 𝐵 → ( ⇝ ‘seq𝑀( + , 𝐹)) = 𝐵)) | |
11 | 8, 9, 10 | mpsyl 65 | . 2 ⊢ (𝜑 → ( ⇝ ‘seq𝑀( + , 𝐹)) = 𝐵) |
12 | 5, 11 | eqtrd 2222 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 class class class wbr 4018 dom cdm 4644 Fun wfun 5229 ⟶wf 5231 ‘cfv 5235 ℂcc 7840 + caddc 7845 ℤcz 9284 ℤ≥cuz 9559 seqcseq 10478 ⇝ cli 11321 Σcsu 11396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-iinf 4605 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-mulrcl 7941 ax-addcom 7942 ax-mulcom 7943 ax-addass 7944 ax-mulass 7945 ax-distr 7946 ax-i2m1 7947 ax-0lt1 7948 ax-1rid 7949 ax-0id 7950 ax-rnegex 7951 ax-precex 7952 ax-cnre 7953 ax-pre-ltirr 7954 ax-pre-ltwlin 7955 ax-pre-lttrn 7956 ax-pre-apti 7957 ax-pre-ltadd 7958 ax-pre-mulgt0 7959 ax-pre-mulext 7960 ax-arch 7961 ax-caucvg 7962 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4311 df-po 4314 df-iso 4315 df-iord 4384 df-on 4386 df-ilim 4387 df-suc 4389 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-isom 5244 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-1st 6166 df-2nd 6167 df-recs 6331 df-irdg 6396 df-frec 6417 df-1o 6442 df-oadd 6446 df-er 6560 df-en 6768 df-dom 6769 df-fin 6770 df-pnf 8025 df-mnf 8026 df-xr 8027 df-ltxr 8028 df-le 8029 df-sub 8161 df-neg 8162 df-reap 8563 df-ap 8570 df-div 8661 df-inn 8951 df-2 9009 df-3 9010 df-4 9011 df-n0 9208 df-z 9285 df-uz 9560 df-q 9652 df-rp 9686 df-fz 10041 df-fzo 10175 df-seqfrec 10479 df-exp 10554 df-ihash 10791 df-cj 10886 df-re 10887 df-im 10888 df-rsqrt 11042 df-abs 11043 df-clim 11322 df-sumdc 11397 |
This theorem is referenced by: isummulc2 11469 isumadd 11474 isumsplit 11534 trirecip 11544 geolim2 11555 geoisum 11560 geoisumr 11561 geoisum1 11562 eftlub 11733 eflegeo 11744 |
Copyright terms: Public domain | W3C validator |