Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > kcnktkm1cn | GIF version |
Description: k times k minus 1 is a complex number if k is a complex number. (Contributed by Alexander van der Vekens, 11-Mar-2018.) |
Ref | Expression |
---|---|
kcnktkm1cn | ⊢ (𝐾 ∈ ℂ → (𝐾 · (𝐾 − 1)) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝐾 ∈ ℂ → 𝐾 ∈ ℂ) | |
2 | ax-1cn 7808 | . . . 4 ⊢ 1 ∈ ℂ | |
3 | 2 | a1i 9 | . . 3 ⊢ (𝐾 ∈ ℂ → 1 ∈ ℂ) |
4 | 1, 3 | subcld 8169 | . 2 ⊢ (𝐾 ∈ ℂ → (𝐾 − 1) ∈ ℂ) |
5 | 1, 4 | mulcld 7881 | 1 ⊢ (𝐾 ∈ ℂ → (𝐾 · (𝐾 − 1)) ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2128 (class class class)co 5818 ℂcc 7713 1c1 7716 · cmul 7720 − cmin 8029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-setind 4494 ax-resscn 7807 ax-1cn 7808 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-addcom 7815 ax-addass 7817 ax-distr 7819 ax-i2m1 7820 ax-0id 7823 ax-rnegex 7824 ax-cnre 7826 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-iota 5132 df-fun 5169 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-sub 8031 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |