ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  kcnktkm1cn GIF version

Theorem kcnktkm1cn 8529
Description: k times k minus 1 is a complex number if k is a complex number. (Contributed by Alexander van der Vekens, 11-Mar-2018.)
Assertion
Ref Expression
kcnktkm1cn (𝐾 ∈ ℂ → (𝐾 · (𝐾 − 1)) ∈ ℂ)

Proof of Theorem kcnktkm1cn
StepHypRef Expression
1 id 19 . 2 (𝐾 ∈ ℂ → 𝐾 ∈ ℂ)
2 ax-1cn 8092 . . . 4 1 ∈ ℂ
32a1i 9 . . 3 (𝐾 ∈ ℂ → 1 ∈ ℂ)
41, 3subcld 8457 . 2 (𝐾 ∈ ℂ → (𝐾 − 1) ∈ ℂ)
51, 4mulcld 8167 1 (𝐾 ∈ ℂ → (𝐾 · (𝐾 − 1)) ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  (class class class)co 6001  cc 7997  1c1 8000   · cmul 8004  cmin 8317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629  ax-resscn 8091  ax-1cn 8092  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-sub 8319
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator