| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ad2ant2l | GIF version | ||
| Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad2ant2l | ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantrl 478 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| 3 | 2 | adantll 476 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: mpteqb 5655 mpofun 6028 xpdom2 6899 addcmpblnq 7453 addpipqqslem 7455 addpipqqs 7456 addclnq 7461 addcomnqg 7467 addassnqg 7468 mulcomnqg 7469 mulassnqg 7470 distrnqg 7473 ltdcnq 7483 enq0ref 7519 addcmpblnq0 7529 addclnq0 7537 nqpnq0nq 7539 nqnq0a 7540 nqnq0m 7541 distrnq0 7545 mulcomnq0 7546 addassnq0lemcl 7547 genpdisj 7609 appdiv0nq 7650 addcomsrg 7841 mulcomsrg 7843 mulasssrg 7844 distrsrg 7845 addcnsr 7920 mulcnsr 7921 addcnsrec 7928 axaddcl 7950 axmulcl 7952 axaddcom 7956 add42 8207 muladd 8429 mulsub 8446 apreim 8649 divmuleqap 8763 ltmul12a 8906 lemul12b 8907 lemul12a 8908 qaddcl 9728 qmulcl 9730 iooshf 10046 fzass4 10156 elfzomelpfzo 10326 tanaddaplem 11922 issubg4m 13401 ghmpreima 13474 islmodd 13927 opnneissb 14499 neitx 14612 txcnmpt 14617 txrest 14620 metcnp3 14855 cncfmet 14936 dveflem 15070 lgsdir2 15382 |
| Copyright terms: Public domain | W3C validator |