| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ad2ant2l | GIF version | ||
| Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad2ant2l | ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantrl 478 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| 3 | 2 | adantll 476 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: mpteqb 5670 mpofun 6047 xpdom2 6926 addcmpblnq 7480 addpipqqslem 7482 addpipqqs 7483 addclnq 7488 addcomnqg 7494 addassnqg 7495 mulcomnqg 7496 mulassnqg 7497 distrnqg 7500 ltdcnq 7510 enq0ref 7546 addcmpblnq0 7556 addclnq0 7564 nqpnq0nq 7566 nqnq0a 7567 nqnq0m 7568 distrnq0 7572 mulcomnq0 7573 addassnq0lemcl 7574 genpdisj 7636 appdiv0nq 7677 addcomsrg 7868 mulcomsrg 7870 mulasssrg 7871 distrsrg 7872 addcnsr 7947 mulcnsr 7948 addcnsrec 7955 axaddcl 7977 axmulcl 7979 axaddcom 7983 add42 8234 muladd 8456 mulsub 8473 apreim 8676 divmuleqap 8790 ltmul12a 8933 lemul12b 8934 lemul12a 8935 qaddcl 9756 qmulcl 9758 iooshf 10074 fzass4 10184 elfzomelpfzo 10360 tanaddaplem 12049 issubg4m 13529 ghmpreima 13602 islmodd 14055 opnneissb 14627 neitx 14740 txcnmpt 14745 txrest 14748 metcnp3 14983 cncfmet 15064 dveflem 15198 lgsdir2 15510 |
| Copyright terms: Public domain | W3C validator |