Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ad2ant2l | GIF version |
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad2ant2l | ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantrl 475 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
3 | 2 | adantll 473 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: mpteqb 5586 mpofun 5955 xpdom2 6809 addcmpblnq 7329 addpipqqslem 7331 addpipqqs 7332 addclnq 7337 addcomnqg 7343 addassnqg 7344 mulcomnqg 7345 mulassnqg 7346 distrnqg 7349 ltdcnq 7359 enq0ref 7395 addcmpblnq0 7405 addclnq0 7413 nqpnq0nq 7415 nqnq0a 7416 nqnq0m 7417 distrnq0 7421 mulcomnq0 7422 addassnq0lemcl 7423 genpdisj 7485 appdiv0nq 7526 addcomsrg 7717 mulcomsrg 7719 mulasssrg 7720 distrsrg 7721 addcnsr 7796 mulcnsr 7797 addcnsrec 7804 axaddcl 7826 axmulcl 7828 axaddcom 7832 add42 8081 muladd 8303 mulsub 8320 apreim 8522 divmuleqap 8634 ltmul12a 8776 lemul12b 8777 lemul12a 8778 qaddcl 9594 qmulcl 9596 iooshf 9909 fzass4 10018 elfzomelpfzo 10187 tanaddaplem 11701 opnneissb 12949 neitx 13062 txcnmpt 13067 txrest 13070 metcnp3 13305 cncfmet 13373 dveflem 13481 lgsdir2 13728 |
Copyright terms: Public domain | W3C validator |