| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ad2ant2l | GIF version | ||
| Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad2ant2l | ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantrl 478 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| 3 | 2 | adantll 476 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: mpteqb 5669 mpofun 6046 xpdom2 6925 addcmpblnq 7479 addpipqqslem 7481 addpipqqs 7482 addclnq 7487 addcomnqg 7493 addassnqg 7494 mulcomnqg 7495 mulassnqg 7496 distrnqg 7499 ltdcnq 7509 enq0ref 7545 addcmpblnq0 7555 addclnq0 7563 nqpnq0nq 7565 nqnq0a 7566 nqnq0m 7567 distrnq0 7571 mulcomnq0 7572 addassnq0lemcl 7573 genpdisj 7635 appdiv0nq 7676 addcomsrg 7867 mulcomsrg 7869 mulasssrg 7870 distrsrg 7871 addcnsr 7946 mulcnsr 7947 addcnsrec 7954 axaddcl 7976 axmulcl 7978 axaddcom 7982 add42 8233 muladd 8455 mulsub 8472 apreim 8675 divmuleqap 8789 ltmul12a 8932 lemul12b 8933 lemul12a 8934 qaddcl 9755 qmulcl 9757 iooshf 10073 fzass4 10183 elfzomelpfzo 10358 tanaddaplem 12020 issubg4m 13500 ghmpreima 13573 islmodd 14026 opnneissb 14598 neitx 14711 txcnmpt 14716 txrest 14719 metcnp3 14954 cncfmet 15035 dveflem 15169 lgsdir2 15481 |
| Copyright terms: Public domain | W3C validator |