Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ad2ant2l | GIF version |
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad2ant2l | ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantrl 470 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
3 | 2 | adantll 468 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: mpteqb 5557 mpofun 5920 xpdom2 6773 addcmpblnq 7281 addpipqqslem 7283 addpipqqs 7284 addclnq 7289 addcomnqg 7295 addassnqg 7296 mulcomnqg 7297 mulassnqg 7298 distrnqg 7301 ltdcnq 7311 enq0ref 7347 addcmpblnq0 7357 addclnq0 7365 nqpnq0nq 7367 nqnq0a 7368 nqnq0m 7369 distrnq0 7373 mulcomnq0 7374 addassnq0lemcl 7375 genpdisj 7437 appdiv0nq 7478 addcomsrg 7669 mulcomsrg 7671 mulasssrg 7672 distrsrg 7673 addcnsr 7748 mulcnsr 7749 addcnsrec 7756 axaddcl 7778 axmulcl 7780 axaddcom 7784 add42 8031 muladd 8253 mulsub 8270 apreim 8472 divmuleqap 8584 ltmul12a 8725 lemul12b 8726 lemul12a 8727 qaddcl 9537 qmulcl 9539 iooshf 9849 fzass4 9957 elfzomelpfzo 10123 tanaddaplem 11628 opnneissb 12526 neitx 12639 txcnmpt 12644 txrest 12647 metcnp3 12882 cncfmet 12950 dveflem 13058 |
Copyright terms: Public domain | W3C validator |