| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ad2ant2l | GIF version | ||
| Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad2ant2l | ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantrl 478 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| 3 | 2 | adantll 476 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: mpteqb 5724 mpofun 6105 xpdom2 6986 addcmpblnq 7550 addpipqqslem 7552 addpipqqs 7553 addclnq 7558 addcomnqg 7564 addassnqg 7565 mulcomnqg 7566 mulassnqg 7567 distrnqg 7570 ltdcnq 7580 enq0ref 7616 addcmpblnq0 7626 addclnq0 7634 nqpnq0nq 7636 nqnq0a 7637 nqnq0m 7638 distrnq0 7642 mulcomnq0 7643 addassnq0lemcl 7644 genpdisj 7706 appdiv0nq 7747 addcomsrg 7938 mulcomsrg 7940 mulasssrg 7941 distrsrg 7942 addcnsr 8017 mulcnsr 8018 addcnsrec 8025 axaddcl 8047 axmulcl 8049 axaddcom 8053 add42 8304 muladd 8526 mulsub 8543 apreim 8746 divmuleqap 8860 ltmul12a 9003 lemul12b 9004 lemul12a 9005 qaddcl 9826 qmulcl 9828 iooshf 10144 fzass4 10254 elfzomelpfzo 10432 swrdccatin2 11256 pfxccatin12 11260 tanaddaplem 12244 issubg4m 13725 ghmpreima 13798 islmodd 14251 opnneissb 14823 neitx 14936 txcnmpt 14941 txrest 14944 metcnp3 15179 cncfmet 15260 dveflem 15394 lgsdir2 15706 |
| Copyright terms: Public domain | W3C validator |