![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ad2ant2l | GIF version |
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad2ant2l | ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantrl 478 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
3 | 2 | adantll 476 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem is referenced by: mpteqb 5648 mpofun 6020 xpdom2 6885 addcmpblnq 7427 addpipqqslem 7429 addpipqqs 7430 addclnq 7435 addcomnqg 7441 addassnqg 7442 mulcomnqg 7443 mulassnqg 7444 distrnqg 7447 ltdcnq 7457 enq0ref 7493 addcmpblnq0 7503 addclnq0 7511 nqpnq0nq 7513 nqnq0a 7514 nqnq0m 7515 distrnq0 7519 mulcomnq0 7520 addassnq0lemcl 7521 genpdisj 7583 appdiv0nq 7624 addcomsrg 7815 mulcomsrg 7817 mulasssrg 7818 distrsrg 7819 addcnsr 7894 mulcnsr 7895 addcnsrec 7902 axaddcl 7924 axmulcl 7926 axaddcom 7930 add42 8181 muladd 8403 mulsub 8420 apreim 8622 divmuleqap 8736 ltmul12a 8879 lemul12b 8880 lemul12a 8881 qaddcl 9700 qmulcl 9702 iooshf 10018 fzass4 10128 elfzomelpfzo 10298 tanaddaplem 11881 issubg4m 13263 ghmpreima 13336 islmodd 13789 opnneissb 14323 neitx 14436 txcnmpt 14441 txrest 14444 metcnp3 14679 cncfmet 14747 dveflem 14872 lgsdir2 15149 |
Copyright terms: Public domain | W3C validator |