| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ad2ant2l | GIF version | ||
| Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad2ant2l | ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantrl 478 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| 3 | 2 | adantll 476 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: mpteqb 5655 mpofun 6028 xpdom2 6899 addcmpblnq 7451 addpipqqslem 7453 addpipqqs 7454 addclnq 7459 addcomnqg 7465 addassnqg 7466 mulcomnqg 7467 mulassnqg 7468 distrnqg 7471 ltdcnq 7481 enq0ref 7517 addcmpblnq0 7527 addclnq0 7535 nqpnq0nq 7537 nqnq0a 7538 nqnq0m 7539 distrnq0 7543 mulcomnq0 7544 addassnq0lemcl 7545 genpdisj 7607 appdiv0nq 7648 addcomsrg 7839 mulcomsrg 7841 mulasssrg 7842 distrsrg 7843 addcnsr 7918 mulcnsr 7919 addcnsrec 7926 axaddcl 7948 axmulcl 7950 axaddcom 7954 add42 8205 muladd 8427 mulsub 8444 apreim 8647 divmuleqap 8761 ltmul12a 8904 lemul12b 8905 lemul12a 8906 qaddcl 9726 qmulcl 9728 iooshf 10044 fzass4 10154 elfzomelpfzo 10324 tanaddaplem 11920 issubg4m 13399 ghmpreima 13472 islmodd 13925 opnneissb 14475 neitx 14588 txcnmpt 14593 txrest 14596 metcnp3 14831 cncfmet 14912 dveflem 15046 lgsdir2 15358 |
| Copyright terms: Public domain | W3C validator |