Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ad2ant2l | GIF version |
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad2ant2l | ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantrl 470 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
3 | 2 | adantll 468 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: mpteqb 5576 mpofun 5944 xpdom2 6797 addcmpblnq 7308 addpipqqslem 7310 addpipqqs 7311 addclnq 7316 addcomnqg 7322 addassnqg 7323 mulcomnqg 7324 mulassnqg 7325 distrnqg 7328 ltdcnq 7338 enq0ref 7374 addcmpblnq0 7384 addclnq0 7392 nqpnq0nq 7394 nqnq0a 7395 nqnq0m 7396 distrnq0 7400 mulcomnq0 7401 addassnq0lemcl 7402 genpdisj 7464 appdiv0nq 7505 addcomsrg 7696 mulcomsrg 7698 mulasssrg 7699 distrsrg 7700 addcnsr 7775 mulcnsr 7776 addcnsrec 7783 axaddcl 7805 axmulcl 7807 axaddcom 7811 add42 8060 muladd 8282 mulsub 8299 apreim 8501 divmuleqap 8613 ltmul12a 8755 lemul12b 8756 lemul12a 8757 qaddcl 9573 qmulcl 9575 iooshf 9888 fzass4 9997 elfzomelpfzo 10166 tanaddaplem 11679 opnneissb 12795 neitx 12908 txcnmpt 12913 txrest 12916 metcnp3 13151 cncfmet 13219 dveflem 13327 lgsdir2 13574 |
Copyright terms: Public domain | W3C validator |