| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ad2ant2l | GIF version | ||
| Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad2ant2l | ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantrl 478 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| 3 | 2 | adantll 476 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: mpteqb 5688 mpofun 6065 xpdom2 6946 addcmpblnq 7510 addpipqqslem 7512 addpipqqs 7513 addclnq 7518 addcomnqg 7524 addassnqg 7525 mulcomnqg 7526 mulassnqg 7527 distrnqg 7530 ltdcnq 7540 enq0ref 7576 addcmpblnq0 7586 addclnq0 7594 nqpnq0nq 7596 nqnq0a 7597 nqnq0m 7598 distrnq0 7602 mulcomnq0 7603 addassnq0lemcl 7604 genpdisj 7666 appdiv0nq 7707 addcomsrg 7898 mulcomsrg 7900 mulasssrg 7901 distrsrg 7902 addcnsr 7977 mulcnsr 7978 addcnsrec 7985 axaddcl 8007 axmulcl 8009 axaddcom 8013 add42 8264 muladd 8486 mulsub 8503 apreim 8706 divmuleqap 8820 ltmul12a 8963 lemul12b 8964 lemul12a 8965 qaddcl 9786 qmulcl 9788 iooshf 10104 fzass4 10214 elfzomelpfzo 10392 tanaddaplem 12134 issubg4m 13614 ghmpreima 13687 islmodd 14140 opnneissb 14712 neitx 14825 txcnmpt 14830 txrest 14833 metcnp3 15068 cncfmet 15149 dveflem 15283 lgsdir2 15595 |
| Copyright terms: Public domain | W3C validator |