| Step | Hyp | Ref
| Expression |
| 1 | | simpl 109 |
. . 3
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → 𝑃
∈ ℤ) |
| 2 | | 2nn0 9283 |
. . . . . . 7
⊢ 2 ∈
ℕ0 |
| 3 | 2 | numexp1 12617 |
. . . . . 6
⊢
(2↑1) = 2 |
| 4 | | df-2 9066 |
. . . . . 6
⊢ 2 = (1 +
1) |
| 5 | 3, 4 | eqtri 2217 |
. . . . 5
⊢
(2↑1) = (1 + 1) |
| 6 | | prmuz2 12324 |
. . . . . . . 8
⊢
(((2↑𝑃) −
1) ∈ ℙ → ((2↑𝑃) − 1) ∈
(ℤ≥‘2)) |
| 7 | 6 | adantl 277 |
. . . . . . 7
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → ((2↑𝑃) − 1) ∈
(ℤ≥‘2)) |
| 8 | | eluz2gt1 9693 |
. . . . . . 7
⊢
(((2↑𝑃) −
1) ∈ (ℤ≥‘2) → 1 < ((2↑𝑃) − 1)) |
| 9 | 7, 8 | syl 14 |
. . . . . 6
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → 1 < ((2↑𝑃) − 1)) |
| 10 | | 1red 8058 |
. . . . . . 7
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → 1 ∈ ℝ) |
| 11 | | 2re 9077 |
. . . . . . . . 9
⊢ 2 ∈
ℝ |
| 12 | 11 | a1i 9 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → 2 ∈ ℝ) |
| 13 | | 2ap0 9100 |
. . . . . . . . 9
⊢ 2 #
0 |
| 14 | 13 | a1i 9 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → 2 # 0) |
| 15 | 12, 14, 1 | reexpclzapd 10807 |
. . . . . . 7
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → (2↑𝑃) ∈ ℝ) |
| 16 | 10, 10, 15 | ltaddsubd 8589 |
. . . . . 6
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → ((1 + 1) < (2↑𝑃) ↔ 1 < ((2↑𝑃) − 1))) |
| 17 | 9, 16 | mpbird 167 |
. . . . 5
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → (1 + 1) < (2↑𝑃)) |
| 18 | 5, 17 | eqbrtrid 4069 |
. . . 4
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → (2↑1) < (2↑𝑃)) |
| 19 | | 1zzd 9370 |
. . . . 5
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → 1 ∈ ℤ) |
| 20 | | 1lt2 9177 |
. . . . . 6
⊢ 1 <
2 |
| 21 | 20 | a1i 9 |
. . . . 5
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → 1 < 2) |
| 22 | 12, 19, 1, 21 | ltexp2d 15262 |
. . . 4
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → (1 < 𝑃 ↔ (2↑1) < (2↑𝑃))) |
| 23 | 18, 22 | mpbird 167 |
. . 3
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → 1 < 𝑃) |
| 24 | | eluz2b1 9692 |
. . 3
⊢ (𝑃 ∈
(ℤ≥‘2) ↔ (𝑃 ∈ ℤ ∧ 1 < 𝑃)) |
| 25 | 1, 23, 24 | sylanbrc 417 |
. 2
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → 𝑃
∈ (ℤ≥‘2)) |
| 26 | | simpllr 534 |
. . . . . . . 8
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → ((2↑𝑃) − 1) ∈
ℙ) |
| 27 | | prmnn 12303 |
. . . . . . . 8
⊢
(((2↑𝑃) −
1) ∈ ℙ → ((2↑𝑃) − 1) ∈
ℕ) |
| 28 | 26, 27 | syl 14 |
. . . . . . 7
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → ((2↑𝑃) − 1) ∈
ℕ) |
| 29 | 28 | nncnd 9021 |
. . . . . 6
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → ((2↑𝑃) − 1) ∈
ℂ) |
| 30 | | 2nn 9169 |
. . . . . . . . . . 11
⊢ 2 ∈
ℕ |
| 31 | | elfzuz 10113 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (2...(𝑃 − 1)) → 𝑘 ∈
(ℤ≥‘2)) |
| 32 | 31 | ad2antlr 489 |
. . . . . . . . . . . . 13
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 𝑘 ∈
(ℤ≥‘2)) |
| 33 | | eluz2nn 9657 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈
(ℤ≥‘2) → 𝑘 ∈ ℕ) |
| 34 | 32, 33 | syl 14 |
. . . . . . . . . . . 12
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 𝑘 ∈ ℕ) |
| 35 | 34 | nnnn0d 9319 |
. . . . . . . . . . 11
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 𝑘 ∈ ℕ0) |
| 36 | | nnexpcl 10661 |
. . . . . . . . . . 11
⊢ ((2
∈ ℕ ∧ 𝑘
∈ ℕ0) → (2↑𝑘) ∈ ℕ) |
| 37 | 30, 35, 36 | sylancr 414 |
. . . . . . . . . 10
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (2↑𝑘) ∈
ℕ) |
| 38 | 37 | nnzd 9464 |
. . . . . . . . 9
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (2↑𝑘) ∈
ℤ) |
| 39 | | peano2zm 9381 |
. . . . . . . . 9
⊢
((2↑𝑘) ∈
ℤ → ((2↑𝑘)
− 1) ∈ ℤ) |
| 40 | 38, 39 | syl 14 |
. . . . . . . 8
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → ((2↑𝑘) − 1) ∈
ℤ) |
| 41 | 40 | zred 9465 |
. . . . . . 7
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → ((2↑𝑘) − 1) ∈
ℝ) |
| 42 | 41 | recnd 8072 |
. . . . . 6
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → ((2↑𝑘) − 1) ∈
ℂ) |
| 43 | | 0red 8044 |
. . . . . . . 8
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 0 ∈
ℝ) |
| 44 | | 1red 8058 |
. . . . . . . 8
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 1 ∈
ℝ) |
| 45 | | 0lt1 8170 |
. . . . . . . . 9
⊢ 0 <
1 |
| 46 | 45 | a1i 9 |
. . . . . . . 8
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 0 <
1) |
| 47 | | eluz2gt1 9693 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈
(ℤ≥‘2) → 1 < 𝑘) |
| 48 | 32, 47 | syl 14 |
. . . . . . . . . . 11
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 1 < 𝑘) |
| 49 | 11 | a1i 9 |
. . . . . . . . . . . 12
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 2 ∈
ℝ) |
| 50 | | 1zzd 9370 |
. . . . . . . . . . . 12
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 1 ∈
ℤ) |
| 51 | | elfzelz 10117 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (2...(𝑃 − 1)) → 𝑘 ∈ ℤ) |
| 52 | 51 | ad2antlr 489 |
. . . . . . . . . . . 12
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 𝑘 ∈ ℤ) |
| 53 | 20 | a1i 9 |
. . . . . . . . . . . 12
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 1 <
2) |
| 54 | 49, 50, 52, 53 | ltexp2d 15262 |
. . . . . . . . . . 11
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (1 < 𝑘 ↔ (2↑1) <
(2↑𝑘))) |
| 55 | 48, 54 | mpbid 147 |
. . . . . . . . . 10
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (2↑1) <
(2↑𝑘)) |
| 56 | 5, 55 | eqbrtrrid 4070 |
. . . . . . . . 9
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (1 + 1) <
(2↑𝑘)) |
| 57 | 37 | nnred 9020 |
. . . . . . . . . 10
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (2↑𝑘) ∈
ℝ) |
| 58 | 44, 44, 57 | ltaddsubd 8589 |
. . . . . . . . 9
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → ((1 + 1) <
(2↑𝑘) ↔ 1 <
((2↑𝑘) −
1))) |
| 59 | 56, 58 | mpbid 147 |
. . . . . . . 8
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 1 < ((2↑𝑘) − 1)) |
| 60 | 43, 44, 41, 46, 59 | lttrd 8169 |
. . . . . . 7
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 0 < ((2↑𝑘) − 1)) |
| 61 | 41, 60 | gt0ap0d 8673 |
. . . . . 6
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → ((2↑𝑘) − 1) #
0) |
| 62 | 29, 42, 61 | divcanap2d 8836 |
. . . . 5
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (((2↑𝑘) − 1) ·
(((2↑𝑃) − 1) /
((2↑𝑘) − 1))) =
((2↑𝑃) −
1)) |
| 63 | 62, 26 | eqeltrd 2273 |
. . . 4
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (((2↑𝑘) − 1) ·
(((2↑𝑃) − 1) /
((2↑𝑘) − 1)))
∈ ℙ) |
| 64 | | elnnz 9353 |
. . . . . . 7
⊢
(((2↑𝑘) −
1) ∈ ℕ ↔ (((2↑𝑘) − 1) ∈ ℤ ∧ 0 <
((2↑𝑘) −
1))) |
| 65 | 40, 60, 64 | sylanbrc 417 |
. . . . . 6
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → ((2↑𝑘) − 1) ∈
ℕ) |
| 66 | | eluz2b2 9694 |
. . . . . 6
⊢
(((2↑𝑘) −
1) ∈ (ℤ≥‘2) ↔ (((2↑𝑘) − 1) ∈ ℕ ∧ 1 <
((2↑𝑘) −
1))) |
| 67 | 65, 59, 66 | sylanbrc 417 |
. . . . 5
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → ((2↑𝑘) − 1) ∈
(ℤ≥‘2)) |
| 68 | 37 | nncnd 9021 |
. . . . . . . . 9
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (2↑𝑘) ∈
ℂ) |
| 69 | | ax-1cn 7989 |
. . . . . . . . . . 11
⊢ 1 ∈
ℂ |
| 70 | | subap0 8687 |
. . . . . . . . . . 11
⊢
(((2↑𝑘) ∈
ℂ ∧ 1 ∈ ℂ) → (((2↑𝑘) − 1) # 0 ↔ (2↑𝑘) # 1)) |
| 71 | 68, 69, 70 | sylancl 413 |
. . . . . . . . . 10
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (((2↑𝑘) − 1) # 0 ↔
(2↑𝑘) #
1)) |
| 72 | 61, 71 | mpbid 147 |
. . . . . . . . 9
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (2↑𝑘) # 1) |
| 73 | | simpr 110 |
. . . . . . . . . . 11
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 𝑘 ∥ 𝑃) |
| 74 | | eluz2nn 9657 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈
(ℤ≥‘2) → 𝑃 ∈ ℕ) |
| 75 | 25, 74 | syl 14 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → 𝑃
∈ ℕ) |
| 76 | 75 | ad2antrr 488 |
. . . . . . . . . . . 12
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 𝑃 ∈ ℕ) |
| 77 | | nndivdvds 11978 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑘 ∥ 𝑃 ↔ (𝑃 / 𝑘) ∈ ℕ)) |
| 78 | 76, 34, 77 | syl2anc 411 |
. . . . . . . . . . 11
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (𝑘 ∥ 𝑃 ↔ (𝑃 / 𝑘) ∈ ℕ)) |
| 79 | 73, 78 | mpbid 147 |
. . . . . . . . . 10
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (𝑃 / 𝑘) ∈ ℕ) |
| 80 | 79 | nnnn0d 9319 |
. . . . . . . . 9
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (𝑃 / 𝑘) ∈
ℕ0) |
| 81 | 68, 72, 80 | geoserap 11689 |
. . . . . . . 8
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → Σ𝑛 ∈ (0...((𝑃 / 𝑘) − 1))((2↑𝑘)↑𝑛) = ((1 − ((2↑𝑘)↑(𝑃 / 𝑘))) / (1 − (2↑𝑘)))) |
| 82 | 15 | ad2antrr 488 |
. . . . . . . . . . . 12
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (2↑𝑃) ∈
ℝ) |
| 83 | 82 | recnd 8072 |
. . . . . . . . . . 11
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (2↑𝑃) ∈
ℂ) |
| 84 | | negsubdi2 8302 |
. . . . . . . . . . 11
⊢
(((2↑𝑃) ∈
ℂ ∧ 1 ∈ ℂ) → -((2↑𝑃) − 1) = (1 − (2↑𝑃))) |
| 85 | 83, 69, 84 | sylancl 413 |
. . . . . . . . . 10
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → -((2↑𝑃) − 1) = (1 −
(2↑𝑃))) |
| 86 | 76 | nncnd 9021 |
. . . . . . . . . . . . . 14
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 𝑃 ∈ ℂ) |
| 87 | 34 | nncnd 9021 |
. . . . . . . . . . . . . 14
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 𝑘 ∈ ℂ) |
| 88 | 34 | nnap0d 9053 |
. . . . . . . . . . . . . 14
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 𝑘 # 0) |
| 89 | 86, 87, 88 | divcanap2d 8836 |
. . . . . . . . . . . . 13
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (𝑘 · (𝑃 / 𝑘)) = 𝑃) |
| 90 | 89 | oveq2d 5941 |
. . . . . . . . . . . 12
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (2↑(𝑘 · (𝑃 / 𝑘))) = (2↑𝑃)) |
| 91 | 49 | recnd 8072 |
. . . . . . . . . . . . 13
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 2 ∈
ℂ) |
| 92 | 91, 80, 35 | expmuld 10785 |
. . . . . . . . . . . 12
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (2↑(𝑘 · (𝑃 / 𝑘))) = ((2↑𝑘)↑(𝑃 / 𝑘))) |
| 93 | 90, 92 | eqtr3d 2231 |
. . . . . . . . . . 11
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (2↑𝑃) = ((2↑𝑘)↑(𝑃 / 𝑘))) |
| 94 | 93 | oveq2d 5941 |
. . . . . . . . . 10
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (1 −
(2↑𝑃)) = (1 −
((2↑𝑘)↑(𝑃 / 𝑘)))) |
| 95 | 85, 94 | eqtrd 2229 |
. . . . . . . . 9
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → -((2↑𝑃) − 1) = (1 −
((2↑𝑘)↑(𝑃 / 𝑘)))) |
| 96 | | negsubdi2 8302 |
. . . . . . . . . 10
⊢
(((2↑𝑘) ∈
ℂ ∧ 1 ∈ ℂ) → -((2↑𝑘) − 1) = (1 − (2↑𝑘))) |
| 97 | 68, 69, 96 | sylancl 413 |
. . . . . . . . 9
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → -((2↑𝑘) − 1) = (1 −
(2↑𝑘))) |
| 98 | 95, 97 | oveq12d 5943 |
. . . . . . . 8
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (-((2↑𝑃) − 1) / -((2↑𝑘) − 1)) = ((1 −
((2↑𝑘)↑(𝑃 / 𝑘))) / (1 − (2↑𝑘)))) |
| 99 | 29, 42, 61 | div2negapd 8849 |
. . . . . . . 8
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (-((2↑𝑃) − 1) / -((2↑𝑘) − 1)) = (((2↑𝑃) − 1) / ((2↑𝑘) − 1))) |
| 100 | 81, 98, 99 | 3eqtr2d 2235 |
. . . . . . 7
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → Σ𝑛 ∈ (0...((𝑃 / 𝑘) − 1))((2↑𝑘)↑𝑛) = (((2↑𝑃) − 1) / ((2↑𝑘) − 1))) |
| 101 | | 0zd 9355 |
. . . . . . . . 9
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 0 ∈
ℤ) |
| 102 | 79 | nnzd 9464 |
. . . . . . . . . 10
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (𝑃 / 𝑘) ∈ ℤ) |
| 103 | 102, 50 | zsubcld 9470 |
. . . . . . . . 9
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → ((𝑃 / 𝑘) − 1) ∈ ℤ) |
| 104 | 101, 103 | fzfigd 10540 |
. . . . . . . 8
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (0...((𝑃 / 𝑘) − 1)) ∈ Fin) |
| 105 | | elfznn0 10206 |
. . . . . . . . 9
⊢ (𝑛 ∈ (0...((𝑃 / 𝑘) − 1)) → 𝑛 ∈ ℕ0) |
| 106 | | zexpcl 10663 |
. . . . . . . . 9
⊢
(((2↑𝑘) ∈
ℤ ∧ 𝑛 ∈
ℕ0) → ((2↑𝑘)↑𝑛) ∈ ℤ) |
| 107 | 38, 105, 106 | syl2an 289 |
. . . . . . . 8
⊢
(((((𝑃 ∈
ℤ ∧ ((2↑𝑃)
− 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘 ∥ 𝑃) ∧ 𝑛 ∈ (0...((𝑃 / 𝑘) − 1))) → ((2↑𝑘)↑𝑛) ∈ ℤ) |
| 108 | 104, 107 | fsumzcl 11584 |
. . . . . . 7
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → Σ𝑛 ∈ (0...((𝑃 / 𝑘) − 1))((2↑𝑘)↑𝑛) ∈ ℤ) |
| 109 | 100, 108 | eqeltrrd 2274 |
. . . . . 6
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (((2↑𝑃) − 1) / ((2↑𝑘) − 1)) ∈
ℤ) |
| 110 | 42 | mullidd 8061 |
. . . . . . . 8
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (1 ·
((2↑𝑘) − 1)) =
((2↑𝑘) −
1)) |
| 111 | | 2z 9371 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℤ |
| 112 | | elfzm11 10183 |
. . . . . . . . . . . . . 14
⊢ ((2
∈ ℤ ∧ 𝑃
∈ ℤ) → (𝑘
∈ (2...(𝑃 − 1))
↔ (𝑘 ∈ ℤ
∧ 2 ≤ 𝑘 ∧ 𝑘 < 𝑃))) |
| 113 | 111, 1, 112 | sylancr 414 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → (𝑘
∈ (2...(𝑃 − 1))
↔ (𝑘 ∈ ℤ
∧ 2 ≤ 𝑘 ∧ 𝑘 < 𝑃))) |
| 114 | 113 | biimpa 296 |
. . . . . . . . . . . 12
⊢ (((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
→ (𝑘 ∈ ℤ
∧ 2 ≤ 𝑘 ∧ 𝑘 < 𝑃)) |
| 115 | 114 | simp3d 1013 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
→ 𝑘 < 𝑃) |
| 116 | 115 | adantr 276 |
. . . . . . . . . 10
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 𝑘 < 𝑃) |
| 117 | 1 | ad2antrr 488 |
. . . . . . . . . . 11
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 𝑃 ∈ ℤ) |
| 118 | 49, 52, 117, 53 | ltexp2d 15262 |
. . . . . . . . . 10
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (𝑘 < 𝑃 ↔ (2↑𝑘) < (2↑𝑃))) |
| 119 | 116, 118 | mpbid 147 |
. . . . . . . . 9
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (2↑𝑘) < (2↑𝑃)) |
| 120 | 57, 82, 44, 119 | ltsub1dd 8601 |
. . . . . . . 8
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → ((2↑𝑘) − 1) < ((2↑𝑃) − 1)) |
| 121 | 110, 120 | eqbrtrd 4056 |
. . . . . . 7
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (1 ·
((2↑𝑘) − 1))
< ((2↑𝑃) −
1)) |
| 122 | 28 | nnred 9020 |
. . . . . . . 8
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → ((2↑𝑃) − 1) ∈
ℝ) |
| 123 | | ltmuldiv 8918 |
. . . . . . . 8
⊢ ((1
∈ ℝ ∧ ((2↑𝑃) − 1) ∈ ℝ ∧
(((2↑𝑘) − 1)
∈ ℝ ∧ 0 < ((2↑𝑘) − 1))) → ((1 ·
((2↑𝑘) − 1))
< ((2↑𝑃) − 1)
↔ 1 < (((2↑𝑃)
− 1) / ((2↑𝑘)
− 1)))) |
| 124 | 44, 122, 41, 60, 123 | syl112anc 1253 |
. . . . . . 7
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → ((1 ·
((2↑𝑘) − 1))
< ((2↑𝑃) − 1)
↔ 1 < (((2↑𝑃)
− 1) / ((2↑𝑘)
− 1)))) |
| 125 | 121, 124 | mpbid 147 |
. . . . . 6
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 1 < (((2↑𝑃) − 1) / ((2↑𝑘) − 1))) |
| 126 | | eluz2b1 9692 |
. . . . . 6
⊢
((((2↑𝑃)
− 1) / ((2↑𝑘)
− 1)) ∈ (ℤ≥‘2) ↔ ((((2↑𝑃) − 1) / ((2↑𝑘) − 1)) ∈ ℤ
∧ 1 < (((2↑𝑃)
− 1) / ((2↑𝑘)
− 1)))) |
| 127 | 109, 125,
126 | sylanbrc 417 |
. . . . 5
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (((2↑𝑃) − 1) / ((2↑𝑘) − 1)) ∈
(ℤ≥‘2)) |
| 128 | | nprm 12316 |
. . . . 5
⊢
((((2↑𝑘)
− 1) ∈ (ℤ≥‘2) ∧ (((2↑𝑃) − 1) / ((2↑𝑘) − 1)) ∈
(ℤ≥‘2)) → ¬ (((2↑𝑘) − 1) · (((2↑𝑃) − 1) / ((2↑𝑘) − 1))) ∈
ℙ) |
| 129 | 67, 127, 128 | syl2anc 411 |
. . . 4
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → ¬ (((2↑𝑘) − 1) ·
(((2↑𝑃) − 1) /
((2↑𝑘) − 1)))
∈ ℙ) |
| 130 | 63, 129 | pm2.65da 662 |
. . 3
⊢ (((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
→ ¬ 𝑘 ∥
𝑃) |
| 131 | 130 | ralrimiva 2570 |
. 2
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → ∀𝑘 ∈ (2...(𝑃 − 1)) ¬ 𝑘 ∥ 𝑃) |
| 132 | | isprm3 12311 |
. 2
⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑘 ∈ (2...(𝑃 − 1)) ¬ 𝑘 ∥ 𝑃)) |
| 133 | 25, 131, 132 | sylanbrc 417 |
1
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → 𝑃
∈ ℙ) |