ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mersenne GIF version

Theorem mersenne 15679
Description: A Mersenne prime is a prime number of the form 2↑𝑃 − 1. This theorem shows that the 𝑃 in this expression is necessarily also prime. (Contributed by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
mersenne ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℙ)

Proof of Theorem mersenne
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℤ)
2 2nn0 9394 . . . . . . 7 2 ∈ ℕ0
32numexp1 12954 . . . . . 6 (2↑1) = 2
4 df-2 9177 . . . . . 6 2 = (1 + 1)
53, 4eqtri 2250 . . . . 5 (2↑1) = (1 + 1)
6 prmuz2 12661 . . . . . . . 8 (((2↑𝑃) − 1) ∈ ℙ → ((2↑𝑃) − 1) ∈ (ℤ‘2))
76adantl 277 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) − 1) ∈ (ℤ‘2))
8 eluz2gt1 9805 . . . . . . 7 (((2↑𝑃) − 1) ∈ (ℤ‘2) → 1 < ((2↑𝑃) − 1))
97, 8syl 14 . . . . . 6 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 1 < ((2↑𝑃) − 1))
10 1red 8169 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 1 ∈ ℝ)
11 2re 9188 . . . . . . . . 9 2 ∈ ℝ
1211a1i 9 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 2 ∈ ℝ)
13 2ap0 9211 . . . . . . . . 9 2 # 0
1413a1i 9 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 2 # 0)
1512, 14, 1reexpclzapd 10928 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (2↑𝑃) ∈ ℝ)
1610, 10, 15ltaddsubd 8700 . . . . . 6 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((1 + 1) < (2↑𝑃) ↔ 1 < ((2↑𝑃) − 1)))
179, 16mpbird 167 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 + 1) < (2↑𝑃))
185, 17eqbrtrid 4118 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (2↑1) < (2↑𝑃))
19 1zzd 9481 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 1 ∈ ℤ)
20 1lt2 9288 . . . . . 6 1 < 2
2120a1i 9 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 1 < 2)
2212, 19, 1, 21ltexp2d 15624 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 < 𝑃 ↔ (2↑1) < (2↑𝑃)))
2318, 22mpbird 167 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 1 < 𝑃)
24 eluz2b1 9804 . . 3 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℤ ∧ 1 < 𝑃))
251, 23, 24sylanbrc 417 . 2 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ (ℤ‘2))
26 simpllr 534 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑃) − 1) ∈ ℙ)
27 prmnn 12640 . . . . . . . 8 (((2↑𝑃) − 1) ∈ ℙ → ((2↑𝑃) − 1) ∈ ℕ)
2826, 27syl 14 . . . . . . 7 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑃) − 1) ∈ ℕ)
2928nncnd 9132 . . . . . 6 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑃) − 1) ∈ ℂ)
30 2nn 9280 . . . . . . . . . . 11 2 ∈ ℕ
31 elfzuz 10225 . . . . . . . . . . . . . 14 (𝑘 ∈ (2...(𝑃 − 1)) → 𝑘 ∈ (ℤ‘2))
3231ad2antlr 489 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘 ∈ (ℤ‘2))
33 eluz2nn 9769 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ‘2) → 𝑘 ∈ ℕ)
3432, 33syl 14 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘 ∈ ℕ)
3534nnnn0d 9430 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘 ∈ ℕ0)
36 nnexpcl 10782 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
3730, 35, 36sylancr 414 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑘) ∈ ℕ)
3837nnzd 9576 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑘) ∈ ℤ)
39 peano2zm 9492 . . . . . . . . 9 ((2↑𝑘) ∈ ℤ → ((2↑𝑘) − 1) ∈ ℤ)
4038, 39syl 14 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑘) − 1) ∈ ℤ)
4140zred 9577 . . . . . . 7 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑘) − 1) ∈ ℝ)
4241recnd 8183 . . . . . 6 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑘) − 1) ∈ ℂ)
43 0red 8155 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 0 ∈ ℝ)
44 1red 8169 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 1 ∈ ℝ)
45 0lt1 8281 . . . . . . . . 9 0 < 1
4645a1i 9 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 0 < 1)
47 eluz2gt1 9805 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘2) → 1 < 𝑘)
4832, 47syl 14 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 1 < 𝑘)
4911a1i 9 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 2 ∈ ℝ)
50 1zzd 9481 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 1 ∈ ℤ)
51 elfzelz 10229 . . . . . . . . . . . . 13 (𝑘 ∈ (2...(𝑃 − 1)) → 𝑘 ∈ ℤ)
5251ad2antlr 489 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘 ∈ ℤ)
5320a1i 9 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 1 < 2)
5449, 50, 52, 53ltexp2d 15624 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (1 < 𝑘 ↔ (2↑1) < (2↑𝑘)))
5548, 54mpbid 147 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑1) < (2↑𝑘))
565, 55eqbrtrrid 4119 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (1 + 1) < (2↑𝑘))
5737nnred 9131 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑘) ∈ ℝ)
5844, 44, 57ltaddsubd 8700 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((1 + 1) < (2↑𝑘) ↔ 1 < ((2↑𝑘) − 1)))
5956, 58mpbid 147 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 1 < ((2↑𝑘) − 1))
6043, 44, 41, 46, 59lttrd 8280 . . . . . . 7 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 0 < ((2↑𝑘) − 1))
6141, 60gt0ap0d 8784 . . . . . 6 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑘) − 1) # 0)
6229, 42, 61divcanap2d 8947 . . . . 5 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (((2↑𝑘) − 1) · (((2↑𝑃) − 1) / ((2↑𝑘) − 1))) = ((2↑𝑃) − 1))
6362, 26eqeltrd 2306 . . . 4 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (((2↑𝑘) − 1) · (((2↑𝑃) − 1) / ((2↑𝑘) − 1))) ∈ ℙ)
64 elnnz 9464 . . . . . . 7 (((2↑𝑘) − 1) ∈ ℕ ↔ (((2↑𝑘) − 1) ∈ ℤ ∧ 0 < ((2↑𝑘) − 1)))
6540, 60, 64sylanbrc 417 . . . . . 6 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑘) − 1) ∈ ℕ)
66 eluz2b2 9806 . . . . . 6 (((2↑𝑘) − 1) ∈ (ℤ‘2) ↔ (((2↑𝑘) − 1) ∈ ℕ ∧ 1 < ((2↑𝑘) − 1)))
6765, 59, 66sylanbrc 417 . . . . 5 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑘) − 1) ∈ (ℤ‘2))
6837nncnd 9132 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑘) ∈ ℂ)
69 ax-1cn 8100 . . . . . . . . . . 11 1 ∈ ℂ
70 subap0 8798 . . . . . . . . . . 11 (((2↑𝑘) ∈ ℂ ∧ 1 ∈ ℂ) → (((2↑𝑘) − 1) # 0 ↔ (2↑𝑘) # 1))
7168, 69, 70sylancl 413 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (((2↑𝑘) − 1) # 0 ↔ (2↑𝑘) # 1))
7261, 71mpbid 147 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑘) # 1)
73 simpr 110 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘𝑃)
74 eluz2nn 9769 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
7525, 74syl 14 . . . . . . . . . . . . 13 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℕ)
7675ad2antrr 488 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑃 ∈ ℕ)
77 nndivdvds 12315 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑘𝑃 ↔ (𝑃 / 𝑘) ∈ ℕ))
7876, 34, 77syl2anc 411 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (𝑘𝑃 ↔ (𝑃 / 𝑘) ∈ ℕ))
7973, 78mpbid 147 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (𝑃 / 𝑘) ∈ ℕ)
8079nnnn0d 9430 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (𝑃 / 𝑘) ∈ ℕ0)
8168, 72, 80geoserap 12026 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → Σ𝑛 ∈ (0...((𝑃 / 𝑘) − 1))((2↑𝑘)↑𝑛) = ((1 − ((2↑𝑘)↑(𝑃 / 𝑘))) / (1 − (2↑𝑘))))
8215ad2antrr 488 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑃) ∈ ℝ)
8382recnd 8183 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑃) ∈ ℂ)
84 negsubdi2 8413 . . . . . . . . . . 11 (((2↑𝑃) ∈ ℂ ∧ 1 ∈ ℂ) → -((2↑𝑃) − 1) = (1 − (2↑𝑃)))
8583, 69, 84sylancl 413 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → -((2↑𝑃) − 1) = (1 − (2↑𝑃)))
8676nncnd 9132 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑃 ∈ ℂ)
8734nncnd 9132 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘 ∈ ℂ)
8834nnap0d 9164 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘 # 0)
8986, 87, 88divcanap2d 8947 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (𝑘 · (𝑃 / 𝑘)) = 𝑃)
9089oveq2d 6023 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑(𝑘 · (𝑃 / 𝑘))) = (2↑𝑃))
9149recnd 8183 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 2 ∈ ℂ)
9291, 80, 35expmuld 10906 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑(𝑘 · (𝑃 / 𝑘))) = ((2↑𝑘)↑(𝑃 / 𝑘)))
9390, 92eqtr3d 2264 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑃) = ((2↑𝑘)↑(𝑃 / 𝑘)))
9493oveq2d 6023 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (1 − (2↑𝑃)) = (1 − ((2↑𝑘)↑(𝑃 / 𝑘))))
9585, 94eqtrd 2262 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → -((2↑𝑃) − 1) = (1 − ((2↑𝑘)↑(𝑃 / 𝑘))))
96 negsubdi2 8413 . . . . . . . . . 10 (((2↑𝑘) ∈ ℂ ∧ 1 ∈ ℂ) → -((2↑𝑘) − 1) = (1 − (2↑𝑘)))
9768, 69, 96sylancl 413 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → -((2↑𝑘) − 1) = (1 − (2↑𝑘)))
9895, 97oveq12d 6025 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (-((2↑𝑃) − 1) / -((2↑𝑘) − 1)) = ((1 − ((2↑𝑘)↑(𝑃 / 𝑘))) / (1 − (2↑𝑘))))
9929, 42, 61div2negapd 8960 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (-((2↑𝑃) − 1) / -((2↑𝑘) − 1)) = (((2↑𝑃) − 1) / ((2↑𝑘) − 1)))
10081, 98, 993eqtr2d 2268 . . . . . . 7 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → Σ𝑛 ∈ (0...((𝑃 / 𝑘) − 1))((2↑𝑘)↑𝑛) = (((2↑𝑃) − 1) / ((2↑𝑘) − 1)))
101 0zd 9466 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 0 ∈ ℤ)
10279nnzd 9576 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (𝑃 / 𝑘) ∈ ℤ)
103102, 50zsubcld 9582 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((𝑃 / 𝑘) − 1) ∈ ℤ)
104101, 103fzfigd 10661 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (0...((𝑃 / 𝑘) − 1)) ∈ Fin)
105 elfznn0 10318 . . . . . . . . 9 (𝑛 ∈ (0...((𝑃 / 𝑘) − 1)) → 𝑛 ∈ ℕ0)
106 zexpcl 10784 . . . . . . . . 9 (((2↑𝑘) ∈ ℤ ∧ 𝑛 ∈ ℕ0) → ((2↑𝑘)↑𝑛) ∈ ℤ)
10738, 105, 106syl2an 289 . . . . . . . 8 (((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) ∧ 𝑛 ∈ (0...((𝑃 / 𝑘) − 1))) → ((2↑𝑘)↑𝑛) ∈ ℤ)
108104, 107fsumzcl 11921 . . . . . . 7 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → Σ𝑛 ∈ (0...((𝑃 / 𝑘) − 1))((2↑𝑘)↑𝑛) ∈ ℤ)
109100, 108eqeltrrd 2307 . . . . . 6 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (((2↑𝑃) − 1) / ((2↑𝑘) − 1)) ∈ ℤ)
11042mullidd 8172 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (1 · ((2↑𝑘) − 1)) = ((2↑𝑘) − 1))
111 2z 9482 . . . . . . . . . . . . . 14 2 ∈ ℤ
112 elfzm11 10295 . . . . . . . . . . . . . 14 ((2 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑘 ∈ (2...(𝑃 − 1)) ↔ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘𝑘 < 𝑃)))
113111, 1, 112sylancr 414 . . . . . . . . . . . . 13 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (𝑘 ∈ (2...(𝑃 − 1)) ↔ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘𝑘 < 𝑃)))
114113biimpa 296 . . . . . . . . . . . 12 (((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) → (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘𝑘 < 𝑃))
115114simp3d 1035 . . . . . . . . . . 11 (((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) → 𝑘 < 𝑃)
116115adantr 276 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘 < 𝑃)
1171ad2antrr 488 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑃 ∈ ℤ)
11849, 52, 117, 53ltexp2d 15624 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (𝑘 < 𝑃 ↔ (2↑𝑘) < (2↑𝑃)))
119116, 118mpbid 147 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑘) < (2↑𝑃))
12057, 82, 44, 119ltsub1dd 8712 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑘) − 1) < ((2↑𝑃) − 1))
121110, 120eqbrtrd 4105 . . . . . . 7 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (1 · ((2↑𝑘) − 1)) < ((2↑𝑃) − 1))
12228nnred 9131 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑃) − 1) ∈ ℝ)
123 ltmuldiv 9029 . . . . . . . 8 ((1 ∈ ℝ ∧ ((2↑𝑃) − 1) ∈ ℝ ∧ (((2↑𝑘) − 1) ∈ ℝ ∧ 0 < ((2↑𝑘) − 1))) → ((1 · ((2↑𝑘) − 1)) < ((2↑𝑃) − 1) ↔ 1 < (((2↑𝑃) − 1) / ((2↑𝑘) − 1))))
12444, 122, 41, 60, 123syl112anc 1275 . . . . . . 7 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((1 · ((2↑𝑘) − 1)) < ((2↑𝑃) − 1) ↔ 1 < (((2↑𝑃) − 1) / ((2↑𝑘) − 1))))
125121, 124mpbid 147 . . . . . 6 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 1 < (((2↑𝑃) − 1) / ((2↑𝑘) − 1)))
126 eluz2b1 9804 . . . . . 6 ((((2↑𝑃) − 1) / ((2↑𝑘) − 1)) ∈ (ℤ‘2) ↔ ((((2↑𝑃) − 1) / ((2↑𝑘) − 1)) ∈ ℤ ∧ 1 < (((2↑𝑃) − 1) / ((2↑𝑘) − 1))))
127109, 125, 126sylanbrc 417 . . . . 5 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (((2↑𝑃) − 1) / ((2↑𝑘) − 1)) ∈ (ℤ‘2))
128 nprm 12653 . . . . 5 ((((2↑𝑘) − 1) ∈ (ℤ‘2) ∧ (((2↑𝑃) − 1) / ((2↑𝑘) − 1)) ∈ (ℤ‘2)) → ¬ (((2↑𝑘) − 1) · (((2↑𝑃) − 1) / ((2↑𝑘) − 1))) ∈ ℙ)
12967, 127, 128syl2anc 411 . . . 4 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ¬ (((2↑𝑘) − 1) · (((2↑𝑃) − 1) / ((2↑𝑘) − 1))) ∈ ℙ)
13063, 129pm2.65da 665 . . 3 (((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) → ¬ 𝑘𝑃)
131130ralrimiva 2603 . 2 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ∀𝑘 ∈ (2...(𝑃 − 1)) ¬ 𝑘𝑃)
132 isprm3 12648 . 2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑘 ∈ (2...(𝑃 − 1)) ¬ 𝑘𝑃))
13325, 131, 132sylanbrc 417 1 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℙ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  wral 2508   class class class wbr 4083  cfv 5318  (class class class)co 6007  cc 8005  cr 8006  0cc0 8007  1c1 8008   + caddc 8010   · cmul 8012   < clt 8189  cle 8190  cmin 8325  -cneg 8326   # cap 8736   / cdiv 8827  cn 9118  2c2 9169  0cn0 9377  cz 9454  cuz 9730  ...cfz 10212  cexp 10768  Σcsu 11872  cdvds 12306  cprime 12637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127  ax-pre-suploc 8128  ax-addf 8129  ax-mulf 8130
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-disj 4060  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-of 6224  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-2o 6569  df-oadd 6572  df-er 6688  df-map 6805  df-pm 6806  df-en 6896  df-dom 6897  df-fin 6898  df-sup 7159  df-inf 7160  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-xneg 9976  df-xadd 9977  df-ioo 10096  df-ico 10098  df-icc 10099  df-fz 10213  df-fzo 10347  df-seqfrec 10678  df-exp 10769  df-fac 10956  df-bc 10978  df-ihash 11006  df-shft 11334  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-sumdc 11873  df-ef 12167  df-e 12168  df-dvds 12307  df-prm 12638  df-rest 13282  df-topgen 13301  df-psmet 14515  df-xmet 14516  df-met 14517  df-bl 14518  df-mopn 14519  df-top 14680  df-topon 14693  df-bases 14725  df-ntr 14778  df-cn 14870  df-cnp 14871  df-tx 14935  df-cncf 15253  df-limced 15338  df-dvap 15339  df-relog 15540  df-rpcxp 15541
This theorem is referenced by:  perfect1  15680  perfect  15683
  Copyright terms: Public domain W3C validator