ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subhalfhalf GIF version

Theorem subhalfhalf 9207
Description: Subtracting the half of a number from the number yields the half of the number. (Contributed by AV, 28-Jun-2021.)
Assertion
Ref Expression
subhalfhalf (𝐴 ∈ ℂ → (𝐴 − (𝐴 / 2)) = (𝐴 / 2))

Proof of Theorem subhalfhalf
StepHypRef Expression
1 id 19 . . . . 5 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
2 2cnd 9045 . . . . 5 (𝐴 ∈ ℂ → 2 ∈ ℂ)
3 2ap0 9065 . . . . . 6 2 # 0
43a1i 9 . . . . 5 (𝐴 ∈ ℂ → 2 # 0)
51, 2, 4divcanap1d 8800 . . . 4 (𝐴 ∈ ℂ → ((𝐴 / 2) · 2) = 𝐴)
65eqcomd 2199 . . 3 (𝐴 ∈ ℂ → 𝐴 = ((𝐴 / 2) · 2))
76oveq1d 5925 . 2 (𝐴 ∈ ℂ → (𝐴 − (𝐴 / 2)) = (((𝐴 / 2) · 2) − (𝐴 / 2)))
8 halfcl 9198 . . . 4 (𝐴 ∈ ℂ → (𝐴 / 2) ∈ ℂ)
98, 2mulcomd 8031 . . 3 (𝐴 ∈ ℂ → ((𝐴 / 2) · 2) = (2 · (𝐴 / 2)))
109oveq1d 5925 . 2 (𝐴 ∈ ℂ → (((𝐴 / 2) · 2) − (𝐴 / 2)) = ((2 · (𝐴 / 2)) − (𝐴 / 2)))
112, 8mulsubfacd 8427 . . 3 (𝐴 ∈ ℂ → ((2 · (𝐴 / 2)) − (𝐴 / 2)) = ((2 − 1) · (𝐴 / 2)))
12 2m1e1 9090 . . . . 5 (2 − 1) = 1
1312a1i 9 . . . 4 (𝐴 ∈ ℂ → (2 − 1) = 1)
1413oveq1d 5925 . . 3 (𝐴 ∈ ℂ → ((2 − 1) · (𝐴 / 2)) = (1 · (𝐴 / 2)))
158mullidd 8027 . . 3 (𝐴 ∈ ℂ → (1 · (𝐴 / 2)) = (𝐴 / 2))
1611, 14, 153eqtrd 2230 . 2 (𝐴 ∈ ℂ → ((2 · (𝐴 / 2)) − (𝐴 / 2)) = (𝐴 / 2))
177, 10, 163eqtrd 2230 1 (𝐴 ∈ ℂ → (𝐴 − (𝐴 / 2)) = (𝐴 / 2))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164   class class class wbr 4029  (class class class)co 5910  cc 7860  0cc0 7862  1c1 7863   · cmul 7867  cmin 8180   # cap 8590   / cdiv 8681  2c2 9023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-setind 4565  ax-cnex 7953  ax-resscn 7954  ax-1cn 7955  ax-1re 7956  ax-icn 7957  ax-addcl 7958  ax-addrcl 7959  ax-mulcl 7960  ax-mulrcl 7961  ax-addcom 7962  ax-mulcom 7963  ax-addass 7964  ax-mulass 7965  ax-distr 7966  ax-i2m1 7967  ax-0lt1 7968  ax-1rid 7969  ax-0id 7970  ax-rnegex 7971  ax-precex 7972  ax-cnre 7973  ax-pre-ltirr 7974  ax-pre-ltwlin 7975  ax-pre-lttrn 7976  ax-pre-apti 7977  ax-pre-ltadd 7978  ax-pre-mulgt0 7979  ax-pre-mulext 7980
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4322  df-po 4325  df-iso 4326  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-iota 5207  df-fun 5248  df-fv 5254  df-riota 5865  df-ov 5913  df-oprab 5914  df-mpo 5915  df-pnf 8046  df-mnf 8047  df-xr 8048  df-ltxr 8049  df-le 8050  df-sub 8182  df-neg 8183  df-reap 8584  df-ap 8591  df-div 8682  df-2 9031
This theorem is referenced by:  fldiv4lem1div2uz2  10365  gausslemma2dlem1a  15116
  Copyright terms: Public domain W3C validator