| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subhalfhalf | GIF version | ||
| Description: Subtracting the half of a number from the number yields the half of the number. (Contributed by AV, 28-Jun-2021.) |
| Ref | Expression |
|---|---|
| subhalfhalf | ⊢ (𝐴 ∈ ℂ → (𝐴 − (𝐴 / 2)) = (𝐴 / 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . . . 5 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
| 2 | 2cnd 9082 | . . . . 5 ⊢ (𝐴 ∈ ℂ → 2 ∈ ℂ) | |
| 3 | 2ap0 9102 | . . . . . 6 ⊢ 2 # 0 | |
| 4 | 3 | a1i 9 | . . . . 5 ⊢ (𝐴 ∈ ℂ → 2 # 0) |
| 5 | 1, 2, 4 | divcanap1d 8837 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((𝐴 / 2) · 2) = 𝐴) |
| 6 | 5 | eqcomd 2202 | . . 3 ⊢ (𝐴 ∈ ℂ → 𝐴 = ((𝐴 / 2) · 2)) |
| 7 | 6 | oveq1d 5940 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 − (𝐴 / 2)) = (((𝐴 / 2) · 2) − (𝐴 / 2))) |
| 8 | halfcl 9236 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 / 2) ∈ ℂ) | |
| 9 | 8, 2 | mulcomd 8067 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝐴 / 2) · 2) = (2 · (𝐴 / 2))) |
| 10 | 9 | oveq1d 5940 | . 2 ⊢ (𝐴 ∈ ℂ → (((𝐴 / 2) · 2) − (𝐴 / 2)) = ((2 · (𝐴 / 2)) − (𝐴 / 2))) |
| 11 | 2, 8 | mulsubfacd 8464 | . . 3 ⊢ (𝐴 ∈ ℂ → ((2 · (𝐴 / 2)) − (𝐴 / 2)) = ((2 − 1) · (𝐴 / 2))) |
| 12 | 2m1e1 9127 | . . . . 5 ⊢ (2 − 1) = 1 | |
| 13 | 12 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ ℂ → (2 − 1) = 1) |
| 14 | 13 | oveq1d 5940 | . . 3 ⊢ (𝐴 ∈ ℂ → ((2 − 1) · (𝐴 / 2)) = (1 · (𝐴 / 2))) |
| 15 | 8 | mullidd 8063 | . . 3 ⊢ (𝐴 ∈ ℂ → (1 · (𝐴 / 2)) = (𝐴 / 2)) |
| 16 | 11, 14, 15 | 3eqtrd 2233 | . 2 ⊢ (𝐴 ∈ ℂ → ((2 · (𝐴 / 2)) − (𝐴 / 2)) = (𝐴 / 2)) |
| 17 | 7, 10, 16 | 3eqtrd 2233 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 − (𝐴 / 2)) = (𝐴 / 2)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 class class class wbr 4034 (class class class)co 5925 ℂcc 7896 0cc0 7898 1c1 7899 · cmul 7903 − cmin 8216 # cap 8627 / cdiv 8718 2c2 9060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-mulrcl 7997 ax-addcom 7998 ax-mulcom 7999 ax-addass 8000 ax-mulass 8001 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-1rid 8005 ax-0id 8006 ax-rnegex 8007 ax-precex 8008 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-apti 8013 ax-pre-ltadd 8014 ax-pre-mulgt0 8015 ax-pre-mulext 8016 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-reap 8621 df-ap 8628 df-div 8719 df-2 9068 |
| This theorem is referenced by: fldiv4lem1div2uz2 10415 gausslemma2dlem1a 15385 |
| Copyright terms: Public domain | W3C validator |