![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > subhalfhalf | GIF version |
Description: Subtracting the half of a number from the number yields the half of the number. (Contributed by AV, 28-Jun-2021.) |
Ref | Expression |
---|---|
subhalfhalf | ⊢ (𝐴 ∈ ℂ → (𝐴 − (𝐴 / 2)) = (𝐴 / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . . 5 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
2 | 2cnd 9060 | . . . . 5 ⊢ (𝐴 ∈ ℂ → 2 ∈ ℂ) | |
3 | 2ap0 9080 | . . . . . 6 ⊢ 2 # 0 | |
4 | 3 | a1i 9 | . . . . 5 ⊢ (𝐴 ∈ ℂ → 2 # 0) |
5 | 1, 2, 4 | divcanap1d 8815 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((𝐴 / 2) · 2) = 𝐴) |
6 | 5 | eqcomd 2202 | . . 3 ⊢ (𝐴 ∈ ℂ → 𝐴 = ((𝐴 / 2) · 2)) |
7 | 6 | oveq1d 5937 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 − (𝐴 / 2)) = (((𝐴 / 2) · 2) − (𝐴 / 2))) |
8 | halfcl 9214 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 / 2) ∈ ℂ) | |
9 | 8, 2 | mulcomd 8046 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝐴 / 2) · 2) = (2 · (𝐴 / 2))) |
10 | 9 | oveq1d 5937 | . 2 ⊢ (𝐴 ∈ ℂ → (((𝐴 / 2) · 2) − (𝐴 / 2)) = ((2 · (𝐴 / 2)) − (𝐴 / 2))) |
11 | 2, 8 | mulsubfacd 8442 | . . 3 ⊢ (𝐴 ∈ ℂ → ((2 · (𝐴 / 2)) − (𝐴 / 2)) = ((2 − 1) · (𝐴 / 2))) |
12 | 2m1e1 9105 | . . . . 5 ⊢ (2 − 1) = 1 | |
13 | 12 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ ℂ → (2 − 1) = 1) |
14 | 13 | oveq1d 5937 | . . 3 ⊢ (𝐴 ∈ ℂ → ((2 − 1) · (𝐴 / 2)) = (1 · (𝐴 / 2))) |
15 | 8 | mullidd 8042 | . . 3 ⊢ (𝐴 ∈ ℂ → (1 · (𝐴 / 2)) = (𝐴 / 2)) |
16 | 11, 14, 15 | 3eqtrd 2233 | . 2 ⊢ (𝐴 ∈ ℂ → ((2 · (𝐴 / 2)) − (𝐴 / 2)) = (𝐴 / 2)) |
17 | 7, 10, 16 | 3eqtrd 2233 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 − (𝐴 / 2)) = (𝐴 / 2)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 class class class wbr 4033 (class class class)co 5922 ℂcc 7875 0cc0 7877 1c1 7878 · cmul 7882 − cmin 8195 # cap 8605 / cdiv 8696 2c2 9038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7968 ax-resscn 7969 ax-1cn 7970 ax-1re 7971 ax-icn 7972 ax-addcl 7973 ax-addrcl 7974 ax-mulcl 7975 ax-mulrcl 7976 ax-addcom 7977 ax-mulcom 7978 ax-addass 7979 ax-mulass 7980 ax-distr 7981 ax-i2m1 7982 ax-0lt1 7983 ax-1rid 7984 ax-0id 7985 ax-rnegex 7986 ax-precex 7987 ax-cnre 7988 ax-pre-ltirr 7989 ax-pre-ltwlin 7990 ax-pre-lttrn 7991 ax-pre-apti 7992 ax-pre-ltadd 7993 ax-pre-mulgt0 7994 ax-pre-mulext 7995 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8061 df-mnf 8062 df-xr 8063 df-ltxr 8064 df-le 8065 df-sub 8197 df-neg 8198 df-reap 8599 df-ap 8606 df-div 8697 df-2 9046 |
This theorem is referenced by: fldiv4lem1div2uz2 10381 gausslemma2dlem1a 15266 |
Copyright terms: Public domain | W3C validator |