ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gausslemma2dlem4 GIF version

Theorem gausslemma2dlem4 15108
Description: Lemma 4 for gausslemma2d 15113. (Contributed by AV, 16-Jun-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
Assertion
Ref Expression
gausslemma2dlem4 (𝜑 → (!‘𝐻) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑘,𝐻   𝑅,𝑘   𝜑,𝑘   𝑥,𝑀,𝑘   𝑃,𝑘
Allowed substitution hint:   𝑅(𝑥)

Proof of Theorem gausslemma2dlem4
StepHypRef Expression
1 gausslemma2d.p . . 3 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 gausslemma2d.h . . 3 𝐻 = ((𝑃 − 1) / 2)
3 gausslemma2d.r . . 3 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
41, 2, 3gausslemma2dlem1 15105 . 2 (𝜑 → (!‘𝐻) = ∏𝑘 ∈ (1...𝐻)(𝑅𝑘))
5 gausslemma2d.m . . . . . 6 𝑀 = (⌊‘(𝑃 / 4))
6 3lt4 9140 . . . . . . . 8 3 < 4
7 breq1 4028 . . . . . . . 8 (𝑃 = 3 → (𝑃 < 4 ↔ 3 < 4))
86, 7mpbiri 168 . . . . . . 7 (𝑃 = 3 → 𝑃 < 4)
9 3nn0 9244 . . . . . . . . 9 3 ∈ ℕ0
10 eleq1 2252 . . . . . . . . 9 (𝑃 = 3 → (𝑃 ∈ ℕ0 ↔ 3 ∈ ℕ0))
119, 10mpbiri 168 . . . . . . . 8 (𝑃 = 3 → 𝑃 ∈ ℕ0)
12 4nn 9131 . . . . . . . 8 4 ∈ ℕ
13 divfl0 10351 . . . . . . . 8 ((𝑃 ∈ ℕ0 ∧ 4 ∈ ℕ) → (𝑃 < 4 ↔ (⌊‘(𝑃 / 4)) = 0))
1411, 12, 13sylancl 413 . . . . . . 7 (𝑃 = 3 → (𝑃 < 4 ↔ (⌊‘(𝑃 / 4)) = 0))
158, 14mpbid 147 . . . . . 6 (𝑃 = 3 → (⌊‘(𝑃 / 4)) = 0)
165, 15eqtrid 2234 . . . . 5 (𝑃 = 3 → 𝑀 = 0)
17 oveq2 5914 . . . . . . . . . . . 12 (𝑀 = 0 → (1...𝑀) = (1...0))
1817adantr 276 . . . . . . . . . . 11 ((𝑀 = 0 ∧ 𝜑) → (1...𝑀) = (1...0))
19 fz10 10098 . . . . . . . . . . 11 (1...0) = ∅
2018, 19eqtrdi 2238 . . . . . . . . . 10 ((𝑀 = 0 ∧ 𝜑) → (1...𝑀) = ∅)
2120prodeq1d 11681 . . . . . . . . 9 ((𝑀 = 0 ∧ 𝜑) → ∏𝑘 ∈ (1...𝑀)(𝑅𝑘) = ∏𝑘 ∈ ∅ (𝑅𝑘))
22 prod0 11702 . . . . . . . . 9 𝑘 ∈ ∅ (𝑅𝑘) = 1
2321, 22eqtrdi 2238 . . . . . . . 8 ((𝑀 = 0 ∧ 𝜑) → ∏𝑘 ∈ (1...𝑀)(𝑅𝑘) = 1)
24 oveq1 5913 . . . . . . . . . . . 12 (𝑀 = 0 → (𝑀 + 1) = (0 + 1))
2524adantr 276 . . . . . . . . . . 11 ((𝑀 = 0 ∧ 𝜑) → (𝑀 + 1) = (0 + 1))
26 0p1e1 9082 . . . . . . . . . . 11 (0 + 1) = 1
2725, 26eqtrdi 2238 . . . . . . . . . 10 ((𝑀 = 0 ∧ 𝜑) → (𝑀 + 1) = 1)
2827oveq1d 5921 . . . . . . . . 9 ((𝑀 = 0 ∧ 𝜑) → ((𝑀 + 1)...𝐻) = (1...𝐻))
2928prodeq1d 11681 . . . . . . . 8 ((𝑀 = 0 ∧ 𝜑) → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = ∏𝑘 ∈ (1...𝐻)(𝑅𝑘))
3023, 29oveq12d 5924 . . . . . . 7 ((𝑀 = 0 ∧ 𝜑) → (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)) = (1 · ∏𝑘 ∈ (1...𝐻)(𝑅𝑘)))
31 1zzd 9330 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℤ)
321, 2gausslemma2dlem0b 15094 . . . . . . . . . . . 12 (𝜑𝐻 ∈ ℕ)
3332nnzd 9424 . . . . . . . . . . 11 (𝜑𝐻 ∈ ℤ)
3431, 33fzfigd 10488 . . . . . . . . . 10 (𝜑 → (1...𝐻) ∈ Fin)
3534adantl 277 . . . . . . . . 9 ((𝑀 = 0 ∧ 𝜑) → (1...𝐻) ∈ Fin)
36 oveq1 5913 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘 → (𝑥 · 2) = (𝑘 · 2))
3736breq1d 4035 . . . . . . . . . . . . . 14 (𝑥 = 𝑘 → ((𝑥 · 2) < (𝑃 / 2) ↔ (𝑘 · 2) < (𝑃 / 2)))
3836oveq2d 5922 . . . . . . . . . . . . . 14 (𝑥 = 𝑘 → (𝑃 − (𝑥 · 2)) = (𝑃 − (𝑘 · 2)))
3937, 36, 38ifbieq12d 3579 . . . . . . . . . . . . 13 (𝑥 = 𝑘 → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))))
40 simpr 110 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...𝐻)) → 𝑘 ∈ (1...𝐻))
4140elfzelzd 10078 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...𝐻)) → 𝑘 ∈ ℤ)
42 2z 9331 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
4342a1i 9 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...𝐻)) → 2 ∈ ℤ)
4441, 43zmulcld 9431 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑘 · 2) ∈ ℤ)
451eldifad 3160 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ ℙ)
46 prmz 12223 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
4745, 46syl 14 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℤ)
4847adantr 276 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...𝐻)) → 𝑃 ∈ ℤ)
4948, 44zsubcld 9430 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑃 − (𝑘 · 2)) ∈ ℤ)
50 zq 9677 . . . . . . . . . . . . . . . 16 ((𝑘 · 2) ∈ ℤ → (𝑘 · 2) ∈ ℚ)
5144, 50syl 14 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑘 · 2) ∈ ℚ)
52 2nn 9129 . . . . . . . . . . . . . . . . 17 2 ∈ ℕ
53 znq 9675 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑃 / 2) ∈ ℚ)
5447, 52, 53sylancl 413 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃 / 2) ∈ ℚ)
5554adantr 276 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑃 / 2) ∈ ℚ)
56 qdclt 10301 . . . . . . . . . . . . . . 15 (((𝑘 · 2) ∈ ℚ ∧ (𝑃 / 2) ∈ ℚ) → DECID (𝑘 · 2) < (𝑃 / 2))
5751, 55, 56syl2anc 411 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...𝐻)) → DECID (𝑘 · 2) < (𝑃 / 2))
5844, 49, 57ifcldcd 3589 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...𝐻)) → if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))) ∈ ℤ)
593, 39, 40, 58fvmptd3 5639 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑅𝑘) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))))
6059, 58eqeltrd 2266 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑅𝑘) ∈ ℤ)
6160zcnd 9426 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑅𝑘) ∈ ℂ)
6261adantll 476 . . . . . . . . 9 (((𝑀 = 0 ∧ 𝜑) ∧ 𝑘 ∈ (1...𝐻)) → (𝑅𝑘) ∈ ℂ)
6335, 62fprodcl 11724 . . . . . . . 8 ((𝑀 = 0 ∧ 𝜑) → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) ∈ ℂ)
6463mullidd 8023 . . . . . . 7 ((𝑀 = 0 ∧ 𝜑) → (1 · ∏𝑘 ∈ (1...𝐻)(𝑅𝑘)) = ∏𝑘 ∈ (1...𝐻)(𝑅𝑘))
6530, 64eqtr2d 2223 . . . . . 6 ((𝑀 = 0 ∧ 𝜑) → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
6665ex 115 . . . . 5 (𝑀 = 0 → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘))))
6716, 66syl 14 . . . 4 (𝑃 = 3 → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘))))
6867impcom 125 . . 3 ((𝜑𝑃 = 3) → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
691, 5gausslemma2dlem0d 15096 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ0)
7069nn0red 9280 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
7170ltp1d 8935 . . . . . . 7 (𝜑𝑀 < (𝑀 + 1))
72 fzdisj 10104 . . . . . . 7 (𝑀 < (𝑀 + 1) → ((1...𝑀) ∩ ((𝑀 + 1)...𝐻)) = ∅)
7371, 72syl 14 . . . . . 6 (𝜑 → ((1...𝑀) ∩ ((𝑀 + 1)...𝐻)) = ∅)
7473adantl 277 . . . . 5 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → ((1...𝑀) ∩ ((𝑀 + 1)...𝐻)) = ∅)
75 eluzelz 9587 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℤ‘5) → 𝑃 ∈ ℤ)
76 znq 9675 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℤ ∧ 4 ∈ ℕ) → (𝑃 / 4) ∈ ℚ)
7775, 12, 76sylancl 413 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℤ‘5) → (𝑃 / 4) ∈ ℚ)
7877flqcld 10332 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘5) → (⌊‘(𝑃 / 4)) ∈ ℤ)
79 nnrp 9715 . . . . . . . . . . . . . . . 16 (4 ∈ ℕ → 4 ∈ ℝ+)
8012, 79ax-mp 5 . . . . . . . . . . . . . . 15 4 ∈ ℝ+
81 eluzelre 9588 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℤ‘5) → 𝑃 ∈ ℝ)
82 eluz2 9584 . . . . . . . . . . . . . . . 16 (𝑃 ∈ (ℤ‘5) ↔ (5 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 5 ≤ 𝑃))
83 4lt5 9143 . . . . . . . . . . . . . . . . . 18 4 < 5
84 4re 9045 . . . . . . . . . . . . . . . . . . 19 4 ∈ ℝ
85 5re 9047 . . . . . . . . . . . . . . . . . . . 20 5 ∈ ℝ
8685a1i 9 . . . . . . . . . . . . . . . . . . 19 ((5 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 5 ∈ ℝ)
87 zre 9307 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℤ → 𝑃 ∈ ℝ)
8887adantl 277 . . . . . . . . . . . . . . . . . . 19 ((5 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑃 ∈ ℝ)
89 ltleletr 8087 . . . . . . . . . . . . . . . . . . 19 ((4 ∈ ℝ ∧ 5 ∈ ℝ ∧ 𝑃 ∈ ℝ) → ((4 < 5 ∧ 5 ≤ 𝑃) → 4 ≤ 𝑃))
9084, 86, 88, 89mp3an2i 1353 . . . . . . . . . . . . . . . . . 18 ((5 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((4 < 5 ∧ 5 ≤ 𝑃) → 4 ≤ 𝑃))
9183, 90mpani 430 . . . . . . . . . . . . . . . . 17 ((5 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (5 ≤ 𝑃 → 4 ≤ 𝑃))
92913impia 1202 . . . . . . . . . . . . . . . 16 ((5 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 5 ≤ 𝑃) → 4 ≤ 𝑃)
9382, 92sylbi 121 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℤ‘5) → 4 ≤ 𝑃)
94 divge1 9775 . . . . . . . . . . . . . . 15 ((4 ∈ ℝ+𝑃 ∈ ℝ ∧ 4 ≤ 𝑃) → 1 ≤ (𝑃 / 4))
9580, 81, 93, 94mp3an2i 1353 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℤ‘5) → 1 ≤ (𝑃 / 4))
96 1zzd 9330 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℤ‘5) → 1 ∈ ℤ)
97 flqge 10337 . . . . . . . . . . . . . . 15 (((𝑃 / 4) ∈ ℚ ∧ 1 ∈ ℤ) → (1 ≤ (𝑃 / 4) ↔ 1 ≤ (⌊‘(𝑃 / 4))))
9877, 96, 97syl2anc 411 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℤ‘5) → (1 ≤ (𝑃 / 4) ↔ 1 ≤ (⌊‘(𝑃 / 4))))
9995, 98mpbid 147 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘5) → 1 ≤ (⌊‘(𝑃 / 4)))
100 elnnz1 9326 . . . . . . . . . . . . 13 ((⌊‘(𝑃 / 4)) ∈ ℕ ↔ ((⌊‘(𝑃 / 4)) ∈ ℤ ∧ 1 ≤ (⌊‘(𝑃 / 4))))
10178, 99, 100sylanbrc 417 . . . . . . . . . . . 12 (𝑃 ∈ (ℤ‘5) → (⌊‘(𝑃 / 4)) ∈ ℕ)
102101adantl 277 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∈ (ℤ‘5)) → (⌊‘(𝑃 / 4)) ∈ ℕ)
103 oddprm 12371 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
104103adantr 276 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∈ (ℤ‘5)) → ((𝑃 − 1) / 2) ∈ ℕ)
105 eldifi 3277 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
106 prmuz2 12243 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
107105, 106syl 14 . . . . . . . . . . . . 13 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘2))
108107adantr 276 . . . . . . . . . . . 12 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∈ (ℤ‘5)) → 𝑃 ∈ (ℤ‘2))
109 fldiv4lem1div2uz2 10361 . . . . . . . . . . . 12 (𝑃 ∈ (ℤ‘2) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))
110108, 109syl 14 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∈ (ℤ‘5)) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))
111102, 104, 1103jca 1179 . . . . . . . . . 10 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∈ (ℤ‘5)) → ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
112111ex 115 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ (ℤ‘5) → ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))))
1131, 112syl 14 . . . . . . . 8 (𝜑 → (𝑃 ∈ (ℤ‘5) → ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))))
114113impcom 125 . . . . . . 7 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
1152oveq2i 5917 . . . . . . . . 9 (1...𝐻) = (1...((𝑃 − 1) / 2))
1165, 115eleq12i 2257 . . . . . . . 8 (𝑀 ∈ (1...𝐻) ↔ (⌊‘(𝑃 / 4)) ∈ (1...((𝑃 − 1) / 2)))
117 elfz1b 10142 . . . . . . . 8 ((⌊‘(𝑃 / 4)) ∈ (1...((𝑃 − 1) / 2)) ↔ ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
118116, 117bitri 184 . . . . . . 7 (𝑀 ∈ (1...𝐻) ↔ ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
119114, 118sylibr 134 . . . . . 6 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → 𝑀 ∈ (1...𝐻))
120 fzsplit 10103 . . . . . 6 (𝑀 ∈ (1...𝐻) → (1...𝐻) = ((1...𝑀) ∪ ((𝑀 + 1)...𝐻)))
121119, 120syl 14 . . . . 5 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → (1...𝐻) = ((1...𝑀) ∪ ((𝑀 + 1)...𝐻)))
12234adantl 277 . . . . 5 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → (1...𝐻) ∈ Fin)
12361adantll 476 . . . . 5 (((𝑃 ∈ (ℤ‘5) ∧ 𝜑) ∧ 𝑘 ∈ (1...𝐻)) → (𝑅𝑘) ∈ ℂ)
12474, 121, 122, 123fprodsplit 11714 . . . 4 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
125124ancoms 268 . . 3 ((𝜑𝑃 ∈ (ℤ‘5)) → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
126 2re 9038 . . . . . . 7 2 ∈ ℝ
127126a1i 9 . . . . . 6 (𝜑 → 2 ∈ ℝ)
128 oddprmgt2 12246 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 2 < 𝑃)
1291, 128syl 14 . . . . . 6 (𝜑 → 2 < 𝑃)
130127, 129gtned 8118 . . . . 5 (𝜑𝑃 ≠ 2)
131130neneqd 2381 . . . 4 (𝜑 → ¬ 𝑃 = 2)
132 prm23ge5 12376 . . . . . . 7 (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5)))
13345, 132syl 14 . . . . . 6 (𝜑 → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5)))
134 3orass 983 . . . . . 6 ((𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5)) ↔ (𝑃 = 2 ∨ (𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5))))
135133, 134sylib 122 . . . . 5 (𝜑 → (𝑃 = 2 ∨ (𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5))))
136135ord 725 . . . 4 (𝜑 → (¬ 𝑃 = 2 → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5))))
137131, 136mpd 13 . . 3 (𝜑 → (𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5)))
13868, 125, 137mpjaodan 799 . 2 (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
1394, 138eqtrd 2222 1 (𝜑 → (!‘𝐻) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3o 979  w3a 980   = wceq 1364  wcel 2160  cdif 3146  cun 3147  cin 3148  c0 3442  ifcif 3553  {csn 3614   class class class wbr 4025  cmpt 4086  cfv 5242  (class class class)co 5906  Fincfn 6781  cc 7856  cr 7857  0cc0 7858  1c1 7859   + caddc 7861   · cmul 7863   < clt 8040  cle 8041  cmin 8176   / cdiv 8677  cn 8968  2c2 9019  3c3 9020  4c4 9021  5c5 9022  0cn0 9226  cz 9303  cuz 9578  cq 9670  +crp 9705  ...cfz 10060  cfl 10323  !cfa 10770  cprod 11667  cprime 12219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4140  ax-sep 4143  ax-nul 4151  ax-pow 4199  ax-pr 4234  ax-un 4458  ax-setind 4561  ax-iinf 4612  ax-cnex 7949  ax-resscn 7950  ax-1cn 7951  ax-1re 7952  ax-icn 7953  ax-addcl 7954  ax-addrcl 7955  ax-mulcl 7956  ax-mulrcl 7957  ax-addcom 7958  ax-mulcom 7959  ax-addass 7960  ax-mulass 7961  ax-distr 7962  ax-i2m1 7963  ax-0lt1 7964  ax-1rid 7965  ax-0id 7966  ax-rnegex 7967  ax-precex 7968  ax-cnre 7969  ax-pre-ltirr 7970  ax-pre-ltwlin 7971  ax-pre-lttrn 7972  ax-pre-apti 7973  ax-pre-ltadd 7974  ax-pre-mulgt0 7975  ax-pre-mulext 7976  ax-arch 7977  ax-caucvg 7978
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2758  df-sbc 2982  df-csb 3077  df-dif 3151  df-un 3153  df-in 3155  df-ss 3162  df-nul 3443  df-if 3554  df-pw 3599  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3832  df-int 3867  df-iun 3910  df-br 4026  df-opab 4087  df-mpt 4088  df-tr 4124  df-id 4318  df-po 4321  df-iso 4322  df-iord 4391  df-on 4393  df-ilim 4394  df-suc 4396  df-iom 4615  df-xp 4657  df-rel 4658  df-cnv 4659  df-co 4660  df-dm 4661  df-rn 4662  df-res 4663  df-ima 4664  df-iota 5203  df-fun 5244  df-fn 5245  df-f 5246  df-f1 5247  df-fo 5248  df-f1o 5249  df-fv 5250  df-isom 5251  df-riota 5861  df-ov 5909  df-oprab 5910  df-mpo 5911  df-1st 6180  df-2nd 6181  df-recs 6345  df-irdg 6410  df-frec 6431  df-1o 6456  df-2o 6457  df-oadd 6460  df-er 6574  df-en 6782  df-dom 6783  df-fin 6784  df-pnf 8042  df-mnf 8043  df-xr 8044  df-ltxr 8045  df-le 8046  df-sub 8178  df-neg 8179  df-reap 8580  df-ap 8587  df-div 8678  df-inn 8969  df-2 9027  df-3 9028  df-4 9029  df-5 9030  df-n0 9227  df-z 9304  df-uz 9579  df-q 9671  df-rp 9706  df-ioo 9944  df-fz 10061  df-fzo 10195  df-fl 10325  df-mod 10380  df-seqfrec 10505  df-exp 10584  df-fac 10771  df-ihash 10821  df-cj 10960  df-re 10961  df-im 10962  df-rsqrt 11116  df-abs 11117  df-clim 11396  df-proddc 11668  df-dvds 11905  df-prm 12220
This theorem is referenced by:  gausslemma2dlem6  15111
  Copyright terms: Public domain W3C validator