Proof of Theorem gausslemma2dlem4
| Step | Hyp | Ref
 | Expression | 
| 1 |   | gausslemma2d.p | 
. . 3
⊢ (𝜑 → 𝑃 ∈ (ℙ ∖
{2})) | 
| 2 |   | gausslemma2d.h | 
. . 3
⊢ 𝐻 = ((𝑃 − 1) / 2) | 
| 3 |   | gausslemma2d.r | 
. . 3
⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) | 
| 4 | 1, 2, 3 | gausslemma2dlem1 15302 | 
. 2
⊢ (𝜑 → (!‘𝐻) = ∏𝑘 ∈ (1...𝐻)(𝑅‘𝑘)) | 
| 5 |   | gausslemma2d.m | 
. . . . . 6
⊢ 𝑀 = (⌊‘(𝑃 / 4)) | 
| 6 |   | 3lt4 9163 | 
. . . . . . . 8
⊢ 3 <
4 | 
| 7 |   | breq1 4036 | 
. . . . . . . 8
⊢ (𝑃 = 3 → (𝑃 < 4 ↔ 3 < 4)) | 
| 8 | 6, 7 | mpbiri 168 | 
. . . . . . 7
⊢ (𝑃 = 3 → 𝑃 < 4) | 
| 9 |   | 3nn0 9267 | 
. . . . . . . . 9
⊢ 3 ∈
ℕ0 | 
| 10 |   | eleq1 2259 | 
. . . . . . . . 9
⊢ (𝑃 = 3 → (𝑃 ∈ ℕ0 ↔ 3 ∈
ℕ0)) | 
| 11 | 9, 10 | mpbiri 168 | 
. . . . . . . 8
⊢ (𝑃 = 3 → 𝑃 ∈
ℕ0) | 
| 12 |   | 4nn 9154 | 
. . . . . . . 8
⊢ 4 ∈
ℕ | 
| 13 |   | divfl0 10386 | 
. . . . . . . 8
⊢ ((𝑃 ∈ ℕ0
∧ 4 ∈ ℕ) → (𝑃 < 4 ↔ (⌊‘(𝑃 / 4)) = 0)) | 
| 14 | 11, 12, 13 | sylancl 413 | 
. . . . . . 7
⊢ (𝑃 = 3 → (𝑃 < 4 ↔ (⌊‘(𝑃 / 4)) = 0)) | 
| 15 | 8, 14 | mpbid 147 | 
. . . . . 6
⊢ (𝑃 = 3 →
(⌊‘(𝑃 / 4)) =
0) | 
| 16 | 5, 15 | eqtrid 2241 | 
. . . . 5
⊢ (𝑃 = 3 → 𝑀 = 0) | 
| 17 |   | oveq2 5930 | 
. . . . . . . . . . . 12
⊢ (𝑀 = 0 → (1...𝑀) = (1...0)) | 
| 18 | 17 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((𝑀 = 0 ∧ 𝜑) → (1...𝑀) = (1...0)) | 
| 19 |   | fz10 10121 | 
. . . . . . . . . . 11
⊢ (1...0) =
∅ | 
| 20 | 18, 19 | eqtrdi 2245 | 
. . . . . . . . . 10
⊢ ((𝑀 = 0 ∧ 𝜑) → (1...𝑀) = ∅) | 
| 21 | 20 | prodeq1d 11729 | 
. . . . . . . . 9
⊢ ((𝑀 = 0 ∧ 𝜑) → ∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) = ∏𝑘 ∈ ∅ (𝑅‘𝑘)) | 
| 22 |   | prod0 11750 | 
. . . . . . . . 9
⊢
∏𝑘 ∈
∅ (𝑅‘𝑘) = 1 | 
| 23 | 21, 22 | eqtrdi 2245 | 
. . . . . . . 8
⊢ ((𝑀 = 0 ∧ 𝜑) → ∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) = 1) | 
| 24 |   | oveq1 5929 | 
. . . . . . . . . . . 12
⊢ (𝑀 = 0 → (𝑀 + 1) = (0 + 1)) | 
| 25 | 24 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((𝑀 = 0 ∧ 𝜑) → (𝑀 + 1) = (0 + 1)) | 
| 26 |   | 0p1e1 9104 | 
. . . . . . . . . . 11
⊢ (0 + 1) =
1 | 
| 27 | 25, 26 | eqtrdi 2245 | 
. . . . . . . . . 10
⊢ ((𝑀 = 0 ∧ 𝜑) → (𝑀 + 1) = 1) | 
| 28 | 27 | oveq1d 5937 | 
. . . . . . . . 9
⊢ ((𝑀 = 0 ∧ 𝜑) → ((𝑀 + 1)...𝐻) = (1...𝐻)) | 
| 29 | 28 | prodeq1d 11729 | 
. . . . . . . 8
⊢ ((𝑀 = 0 ∧ 𝜑) → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) = ∏𝑘 ∈ (1...𝐻)(𝑅‘𝑘)) | 
| 30 | 23, 29 | oveq12d 5940 | 
. . . . . . 7
⊢ ((𝑀 = 0 ∧ 𝜑) → (∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘)) = (1 · ∏𝑘 ∈ (1...𝐻)(𝑅‘𝑘))) | 
| 31 |   | 1zzd 9353 | 
. . . . . . . . . . 11
⊢ (𝜑 → 1 ∈
ℤ) | 
| 32 | 1, 2 | gausslemma2dlem0b 15291 | 
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐻 ∈ ℕ) | 
| 33 | 32 | nnzd 9447 | 
. . . . . . . . . . 11
⊢ (𝜑 → 𝐻 ∈ ℤ) | 
| 34 | 31, 33 | fzfigd 10523 | 
. . . . . . . . . 10
⊢ (𝜑 → (1...𝐻) ∈ Fin) | 
| 35 | 34 | adantl 277 | 
. . . . . . . . 9
⊢ ((𝑀 = 0 ∧ 𝜑) → (1...𝐻) ∈ Fin) | 
| 36 |   | oveq1 5929 | 
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑘 → (𝑥 · 2) = (𝑘 · 2)) | 
| 37 | 36 | breq1d 4043 | 
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑘 → ((𝑥 · 2) < (𝑃 / 2) ↔ (𝑘 · 2) < (𝑃 / 2))) | 
| 38 | 36 | oveq2d 5938 | 
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑘 → (𝑃 − (𝑥 · 2)) = (𝑃 − (𝑘 · 2))) | 
| 39 | 37, 36, 38 | ifbieq12d 3587 | 
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑘 → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2)))) | 
| 40 |   | simpr 110 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝐻)) → 𝑘 ∈ (1...𝐻)) | 
| 41 | 40 | elfzelzd 10101 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝐻)) → 𝑘 ∈ ℤ) | 
| 42 |   | 2z 9354 | 
. . . . . . . . . . . . . . . 16
⊢ 2 ∈
ℤ | 
| 43 | 42 | a1i 9 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝐻)) → 2 ∈ ℤ) | 
| 44 | 41, 43 | zmulcld 9454 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝐻)) → (𝑘 · 2) ∈ ℤ) | 
| 45 | 1 | eldifad 3168 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑃 ∈ ℙ) | 
| 46 |   | prmz 12279 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) | 
| 47 | 45, 46 | syl 14 | 
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑃 ∈ ℤ) | 
| 48 | 47 | adantr 276 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝐻)) → 𝑃 ∈ ℤ) | 
| 49 | 48, 44 | zsubcld 9453 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝐻)) → (𝑃 − (𝑘 · 2)) ∈
ℤ) | 
| 50 |   | zq 9700 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 · 2) ∈ ℤ
→ (𝑘 · 2)
∈ ℚ) | 
| 51 | 44, 50 | syl 14 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝐻)) → (𝑘 · 2) ∈ ℚ) | 
| 52 |   | 2nn 9152 | 
. . . . . . . . . . . . . . . . 17
⊢ 2 ∈
ℕ | 
| 53 |   | znq 9698 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃 ∈ ℤ ∧ 2 ∈
ℕ) → (𝑃 / 2)
∈ ℚ) | 
| 54 | 47, 52, 53 | sylancl 413 | 
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑃 / 2) ∈ ℚ) | 
| 55 | 54 | adantr 276 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝐻)) → (𝑃 / 2) ∈ ℚ) | 
| 56 |   | qdclt 10335 | 
. . . . . . . . . . . . . . 15
⊢ (((𝑘 · 2) ∈ ℚ
∧ (𝑃 / 2) ∈
ℚ) → DECID (𝑘 · 2) < (𝑃 / 2)) | 
| 57 | 51, 55, 56 | syl2anc 411 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝐻)) → DECID (𝑘 · 2) < (𝑃 / 2)) | 
| 58 | 44, 49, 57 | ifcldcd 3597 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝐻)) → if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))) ∈
ℤ) | 
| 59 | 3, 39, 40, 58 | fvmptd3 5655 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝐻)) → (𝑅‘𝑘) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2)))) | 
| 60 | 59, 58 | eqeltrd 2273 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝐻)) → (𝑅‘𝑘) ∈ ℤ) | 
| 61 | 60 | zcnd 9449 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝐻)) → (𝑅‘𝑘) ∈ ℂ) | 
| 62 | 61 | adantll 476 | 
. . . . . . . . 9
⊢ (((𝑀 = 0 ∧ 𝜑) ∧ 𝑘 ∈ (1...𝐻)) → (𝑅‘𝑘) ∈ ℂ) | 
| 63 | 35, 62 | fprodcl 11772 | 
. . . . . . . 8
⊢ ((𝑀 = 0 ∧ 𝜑) → ∏𝑘 ∈ (1...𝐻)(𝑅‘𝑘) ∈ ℂ) | 
| 64 | 63 | mullidd 8044 | 
. . . . . . 7
⊢ ((𝑀 = 0 ∧ 𝜑) → (1 · ∏𝑘 ∈ (1...𝐻)(𝑅‘𝑘)) = ∏𝑘 ∈ (1...𝐻)(𝑅‘𝑘)) | 
| 65 | 30, 64 | eqtr2d 2230 | 
. . . . . 6
⊢ ((𝑀 = 0 ∧ 𝜑) → ∏𝑘 ∈ (1...𝐻)(𝑅‘𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘))) | 
| 66 | 65 | ex 115 | 
. . . . 5
⊢ (𝑀 = 0 → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅‘𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘)))) | 
| 67 | 16, 66 | syl 14 | 
. . . 4
⊢ (𝑃 = 3 → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅‘𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘)))) | 
| 68 | 67 | impcom 125 | 
. . 3
⊢ ((𝜑 ∧ 𝑃 = 3) → ∏𝑘 ∈ (1...𝐻)(𝑅‘𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘))) | 
| 69 | 1, 5 | gausslemma2dlem0d 15293 | 
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈
ℕ0) | 
| 70 | 69 | nn0red 9303 | 
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℝ) | 
| 71 | 70 | ltp1d 8957 | 
. . . . . . 7
⊢ (𝜑 → 𝑀 < (𝑀 + 1)) | 
| 72 |   | fzdisj 10127 | 
. . . . . . 7
⊢ (𝑀 < (𝑀 + 1) → ((1...𝑀) ∩ ((𝑀 + 1)...𝐻)) = ∅) | 
| 73 | 71, 72 | syl 14 | 
. . . . . 6
⊢ (𝜑 → ((1...𝑀) ∩ ((𝑀 + 1)...𝐻)) = ∅) | 
| 74 | 73 | adantl 277 | 
. . . . 5
⊢ ((𝑃 ∈
(ℤ≥‘5) ∧ 𝜑) → ((1...𝑀) ∩ ((𝑀 + 1)...𝐻)) = ∅) | 
| 75 |   | eluzelz 9610 | 
. . . . . . . . . . . . . . 15
⊢ (𝑃 ∈
(ℤ≥‘5) → 𝑃 ∈ ℤ) | 
| 76 |   | znq 9698 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈ ℤ ∧ 4 ∈
ℕ) → (𝑃 / 4)
∈ ℚ) | 
| 77 | 75, 12, 76 | sylancl 413 | 
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈
(ℤ≥‘5) → (𝑃 / 4) ∈ ℚ) | 
| 78 | 77 | flqcld 10367 | 
. . . . . . . . . . . . 13
⊢ (𝑃 ∈
(ℤ≥‘5) → (⌊‘(𝑃 / 4)) ∈ ℤ) | 
| 79 |   | nnrp 9738 | 
. . . . . . . . . . . . . . . 16
⊢ (4 ∈
ℕ → 4 ∈ ℝ+) | 
| 80 | 12, 79 | ax-mp 5 | 
. . . . . . . . . . . . . . 15
⊢ 4 ∈
ℝ+ | 
| 81 |   | eluzelre 9611 | 
. . . . . . . . . . . . . . 15
⊢ (𝑃 ∈
(ℤ≥‘5) → 𝑃 ∈ ℝ) | 
| 82 |   | eluz2 9607 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑃 ∈
(ℤ≥‘5) ↔ (5 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 5 ≤
𝑃)) | 
| 83 |   | 4lt5 9166 | 
. . . . . . . . . . . . . . . . . 18
⊢ 4 <
5 | 
| 84 |   | 4re 9067 | 
. . . . . . . . . . . . . . . . . . 19
⊢ 4 ∈
ℝ | 
| 85 |   | 5re 9069 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ 5 ∈
ℝ | 
| 86 | 85 | a1i 9 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((5
∈ ℤ ∧ 𝑃
∈ ℤ) → 5 ∈ ℝ) | 
| 87 |   | zre 9330 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑃 ∈ ℤ → 𝑃 ∈
ℝ) | 
| 88 | 87 | adantl 277 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((5
∈ ℤ ∧ 𝑃
∈ ℤ) → 𝑃
∈ ℝ) | 
| 89 |   | ltleletr 8108 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((4
∈ ℝ ∧ 5 ∈ ℝ ∧ 𝑃 ∈ ℝ) → ((4 < 5 ∧ 5
≤ 𝑃) → 4 ≤ 𝑃)) | 
| 90 | 84, 86, 88, 89 | mp3an2i 1353 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((5
∈ ℤ ∧ 𝑃
∈ ℤ) → ((4 < 5 ∧ 5 ≤ 𝑃) → 4 ≤ 𝑃)) | 
| 91 | 83, 90 | mpani 430 | 
. . . . . . . . . . . . . . . . 17
⊢ ((5
∈ ℤ ∧ 𝑃
∈ ℤ) → (5 ≤ 𝑃 → 4 ≤ 𝑃)) | 
| 92 | 91 | 3impia 1202 | 
. . . . . . . . . . . . . . . 16
⊢ ((5
∈ ℤ ∧ 𝑃
∈ ℤ ∧ 5 ≤ 𝑃) → 4 ≤ 𝑃) | 
| 93 | 82, 92 | sylbi 121 | 
. . . . . . . . . . . . . . 15
⊢ (𝑃 ∈
(ℤ≥‘5) → 4 ≤ 𝑃) | 
| 94 |   | divge1 9798 | 
. . . . . . . . . . . . . . 15
⊢ ((4
∈ ℝ+ ∧ 𝑃 ∈ ℝ ∧ 4 ≤ 𝑃) → 1 ≤ (𝑃 / 4)) | 
| 95 | 80, 81, 93, 94 | mp3an2i 1353 | 
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈
(ℤ≥‘5) → 1 ≤ (𝑃 / 4)) | 
| 96 |   | 1zzd 9353 | 
. . . . . . . . . . . . . . 15
⊢ (𝑃 ∈
(ℤ≥‘5) → 1 ∈ ℤ) | 
| 97 |   | flqge 10372 | 
. . . . . . . . . . . . . . 15
⊢ (((𝑃 / 4) ∈ ℚ ∧ 1
∈ ℤ) → (1 ≤ (𝑃 / 4) ↔ 1 ≤ (⌊‘(𝑃 / 4)))) | 
| 98 | 77, 96, 97 | syl2anc 411 | 
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈
(ℤ≥‘5) → (1 ≤ (𝑃 / 4) ↔ 1 ≤ (⌊‘(𝑃 / 4)))) | 
| 99 | 95, 98 | mpbid 147 | 
. . . . . . . . . . . . 13
⊢ (𝑃 ∈
(ℤ≥‘5) → 1 ≤ (⌊‘(𝑃 / 4))) | 
| 100 |   | elnnz1 9349 | 
. . . . . . . . . . . . 13
⊢
((⌊‘(𝑃 /
4)) ∈ ℕ ↔ ((⌊‘(𝑃 / 4)) ∈ ℤ ∧ 1 ≤
(⌊‘(𝑃 /
4)))) | 
| 101 | 78, 99, 100 | sylanbrc 417 | 
. . . . . . . . . . . 12
⊢ (𝑃 ∈
(ℤ≥‘5) → (⌊‘(𝑃 / 4)) ∈ ℕ) | 
| 102 | 101 | adantl 277 | 
. . . . . . . . . . 11
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑃 ∈
(ℤ≥‘5)) → (⌊‘(𝑃 / 4)) ∈ ℕ) | 
| 103 |   | oddprm 12428 | 
. . . . . . . . . . . 12
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ ((𝑃 − 1) / 2)
∈ ℕ) | 
| 104 | 103 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑃 ∈
(ℤ≥‘5)) → ((𝑃 − 1) / 2) ∈
ℕ) | 
| 105 |   | eldifi 3285 | 
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ∈
ℙ) | 
| 106 |   | prmuz2 12299 | 
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
(ℤ≥‘2)) | 
| 107 | 105, 106 | syl 14 | 
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ∈
(ℤ≥‘2)) | 
| 108 | 107 | adantr 276 | 
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑃 ∈
(ℤ≥‘5)) → 𝑃 ∈
(ℤ≥‘2)) | 
| 109 |   | fldiv4lem1div2uz2 10396 | 
. . . . . . . . . . . 12
⊢ (𝑃 ∈
(ℤ≥‘2) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)) | 
| 110 | 108, 109 | syl 14 | 
. . . . . . . . . . 11
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑃 ∈
(ℤ≥‘5)) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)) | 
| 111 | 102, 104,
110 | 3jca 1179 | 
. . . . . . . . . 10
⊢ ((𝑃 ∈ (ℙ ∖ {2})
∧ 𝑃 ∈
(ℤ≥‘5)) → ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ
∧ (⌊‘(𝑃 /
4)) ≤ ((𝑃 − 1) /
2))) | 
| 112 | 111 | ex 115 | 
. . . . . . . . 9
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ (𝑃 ∈
(ℤ≥‘5) → ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ
∧ (⌊‘(𝑃 /
4)) ≤ ((𝑃 − 1) /
2)))) | 
| 113 | 1, 112 | syl 14 | 
. . . . . . . 8
⊢ (𝜑 → (𝑃 ∈ (ℤ≥‘5)
→ ((⌊‘(𝑃 /
4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧
(⌊‘(𝑃 / 4))
≤ ((𝑃 − 1) /
2)))) | 
| 114 | 113 | impcom 125 | 
. . . . . . 7
⊢ ((𝑃 ∈
(ℤ≥‘5) ∧ 𝜑) → ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ
∧ (⌊‘(𝑃 /
4)) ≤ ((𝑃 − 1) /
2))) | 
| 115 | 2 | oveq2i 5933 | 
. . . . . . . . 9
⊢
(1...𝐻) =
(1...((𝑃 − 1) /
2)) | 
| 116 | 5, 115 | eleq12i 2264 | 
. . . . . . . 8
⊢ (𝑀 ∈ (1...𝐻) ↔ (⌊‘(𝑃 / 4)) ∈ (1...((𝑃 − 1) / 2))) | 
| 117 |   | elfz1b 10165 | 
. . . . . . . 8
⊢
((⌊‘(𝑃 /
4)) ∈ (1...((𝑃 −
1) / 2)) ↔ ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ
∧ (⌊‘(𝑃 /
4)) ≤ ((𝑃 − 1) /
2))) | 
| 118 | 116, 117 | bitri 184 | 
. . . . . . 7
⊢ (𝑀 ∈ (1...𝐻) ↔ ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ
∧ (⌊‘(𝑃 /
4)) ≤ ((𝑃 − 1) /
2))) | 
| 119 | 114, 118 | sylibr 134 | 
. . . . . 6
⊢ ((𝑃 ∈
(ℤ≥‘5) ∧ 𝜑) → 𝑀 ∈ (1...𝐻)) | 
| 120 |   | fzsplit 10126 | 
. . . . . 6
⊢ (𝑀 ∈ (1...𝐻) → (1...𝐻) = ((1...𝑀) ∪ ((𝑀 + 1)...𝐻))) | 
| 121 | 119, 120 | syl 14 | 
. . . . 5
⊢ ((𝑃 ∈
(ℤ≥‘5) ∧ 𝜑) → (1...𝐻) = ((1...𝑀) ∪ ((𝑀 + 1)...𝐻))) | 
| 122 | 34 | adantl 277 | 
. . . . 5
⊢ ((𝑃 ∈
(ℤ≥‘5) ∧ 𝜑) → (1...𝐻) ∈ Fin) | 
| 123 | 61 | adantll 476 | 
. . . . 5
⊢ (((𝑃 ∈
(ℤ≥‘5) ∧ 𝜑) ∧ 𝑘 ∈ (1...𝐻)) → (𝑅‘𝑘) ∈ ℂ) | 
| 124 | 74, 121, 122, 123 | fprodsplit 11762 | 
. . . 4
⊢ ((𝑃 ∈
(ℤ≥‘5) ∧ 𝜑) → ∏𝑘 ∈ (1...𝐻)(𝑅‘𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘))) | 
| 125 | 124 | ancoms 268 | 
. . 3
⊢ ((𝜑 ∧ 𝑃 ∈ (ℤ≥‘5))
→ ∏𝑘 ∈
(1...𝐻)(𝑅‘𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘))) | 
| 126 |   | 2re 9060 | 
. . . . . . 7
⊢ 2 ∈
ℝ | 
| 127 | 126 | a1i 9 | 
. . . . . 6
⊢ (𝜑 → 2 ∈
ℝ) | 
| 128 |   | oddprmgt2 12302 | 
. . . . . . 7
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 2 < 𝑃) | 
| 129 | 1, 128 | syl 14 | 
. . . . . 6
⊢ (𝜑 → 2 < 𝑃) | 
| 130 | 127, 129 | gtned 8139 | 
. . . . 5
⊢ (𝜑 → 𝑃 ≠ 2) | 
| 131 | 130 | neneqd 2388 | 
. . . 4
⊢ (𝜑 → ¬ 𝑃 = 2) | 
| 132 |   | prm23ge5 12433 | 
. . . . . . 7
⊢ (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈
(ℤ≥‘5))) | 
| 133 | 45, 132 | syl 14 | 
. . . . . 6
⊢ (𝜑 → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈
(ℤ≥‘5))) | 
| 134 |   | 3orass 983 | 
. . . . . 6
⊢ ((𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))
↔ (𝑃 = 2 ∨ (𝑃 = 3 ∨ 𝑃 ∈
(ℤ≥‘5)))) | 
| 135 | 133, 134 | sylib 122 | 
. . . . 5
⊢ (𝜑 → (𝑃 = 2 ∨ (𝑃 = 3 ∨ 𝑃 ∈
(ℤ≥‘5)))) | 
| 136 | 135 | ord 725 | 
. . . 4
⊢ (𝜑 → (¬ 𝑃 = 2 → (𝑃 = 3 ∨ 𝑃 ∈
(ℤ≥‘5)))) | 
| 137 | 131, 136 | mpd 13 | 
. . 3
⊢ (𝜑 → (𝑃 = 3 ∨ 𝑃 ∈
(ℤ≥‘5))) | 
| 138 | 68, 125, 137 | mpjaodan 799 | 
. 2
⊢ (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅‘𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘))) | 
| 139 | 4, 138 | eqtrd 2229 | 
1
⊢ (𝜑 → (!‘𝐻) = (∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘))) |