| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gausslemma2dlem7 | GIF version | ||
| Description: Lemma 7 for gausslemma2d 15756. (Contributed by AV, 13-Jul-2021.) |
| Ref | Expression |
|---|---|
| gausslemma2d.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
| gausslemma2d.h | ⊢ 𝐻 = ((𝑃 − 1) / 2) |
| gausslemma2d.r | ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) |
| gausslemma2d.m | ⊢ 𝑀 = (⌊‘(𝑃 / 4)) |
| gausslemma2d.n | ⊢ 𝑁 = (𝐻 − 𝑀) |
| Ref | Expression |
|---|---|
| gausslemma2dlem7 | ⊢ (𝜑 → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gausslemma2d.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
| 2 | gausslemma2d.h | . . 3 ⊢ 𝐻 = ((𝑃 − 1) / 2) | |
| 3 | gausslemma2d.r | . . 3 ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) | |
| 4 | gausslemma2d.m | . . 3 ⊢ 𝑀 = (⌊‘(𝑃 / 4)) | |
| 5 | gausslemma2d.n | . . 3 ⊢ 𝑁 = (𝐻 − 𝑀) | |
| 6 | 1, 2, 3, 4, 5 | gausslemma2dlem6 15754 | . 2 ⊢ (𝜑 → ((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃)) |
| 7 | 1, 2 | gausslemma2dlem0b 15737 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐻 ∈ ℕ) |
| 8 | 7 | nnnn0d 9430 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐻 ∈ ℕ0) |
| 9 | 8 | faccld 10966 | . . . . . . . . 9 ⊢ (𝜑 → (!‘𝐻) ∈ ℕ) |
| 10 | 9 | nncnd 9132 | . . . . . . . 8 ⊢ (𝜑 → (!‘𝐻) ∈ ℂ) |
| 11 | 10 | mullidd 8172 | . . . . . . 7 ⊢ (𝜑 → (1 · (!‘𝐻)) = (!‘𝐻)) |
| 12 | 11 | eqcomd 2235 | . . . . . 6 ⊢ (𝜑 → (!‘𝐻) = (1 · (!‘𝐻))) |
| 13 | 12 | oveq1d 6022 | . . . . 5 ⊢ (𝜑 → ((!‘𝐻) mod 𝑃) = ((1 · (!‘𝐻)) mod 𝑃)) |
| 14 | 13 | eqeq1d 2238 | . . . 4 ⊢ (𝜑 → (((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ ((1 · (!‘𝐻)) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃))) |
| 15 | 1zzd 9481 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 16 | neg1z 9486 | . . . . . . 7 ⊢ -1 ∈ ℤ | |
| 17 | 1, 4, 2, 5 | gausslemma2dlem0h 15743 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 18 | zexpcl 10784 | . . . . . . 7 ⊢ ((-1 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) ∈ ℤ) | |
| 19 | 16, 17, 18 | sylancr 414 | . . . . . 6 ⊢ (𝜑 → (-1↑𝑁) ∈ ℤ) |
| 20 | 2z 9482 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 21 | zexpcl 10784 | . . . . . . 7 ⊢ ((2 ∈ ℤ ∧ 𝐻 ∈ ℕ0) → (2↑𝐻) ∈ ℤ) | |
| 22 | 20, 8, 21 | sylancr 414 | . . . . . 6 ⊢ (𝜑 → (2↑𝐻) ∈ ℤ) |
| 23 | 19, 22 | zmulcld 9583 | . . . . 5 ⊢ (𝜑 → ((-1↑𝑁) · (2↑𝐻)) ∈ ℤ) |
| 24 | 9 | nnzd 9576 | . . . . 5 ⊢ (𝜑 → (!‘𝐻) ∈ ℤ) |
| 25 | 1 | gausslemma2dlem0a 15736 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 26 | 1, 2 | gausslemma2dlem0c 15738 | . . . . 5 ⊢ (𝜑 → ((!‘𝐻) gcd 𝑃) = 1) |
| 27 | cncongrcoprm 12636 | . . . . 5 ⊢ (((1 ∈ ℤ ∧ ((-1↑𝑁) · (2↑𝐻)) ∈ ℤ ∧ (!‘𝐻) ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ ((!‘𝐻) gcd 𝑃) = 1)) → (((1 · (!‘𝐻)) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃))) | |
| 28 | 15, 23, 24, 25, 26, 27 | syl32anc 1279 | . . . 4 ⊢ (𝜑 → (((1 · (!‘𝐻)) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃))) |
| 29 | 14, 28 | bitrd 188 | . . 3 ⊢ (𝜑 → (((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃))) |
| 30 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)) → (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)) | |
| 31 | nnq 9836 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℚ) | |
| 32 | 25, 31 | syl 14 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℚ) |
| 33 | 1 | eldifad 3208 | . . . . . . . 8 ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| 34 | prmgt1 12662 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → 1 < 𝑃) | |
| 35 | 33, 34 | syl 14 | . . . . . . 7 ⊢ (𝜑 → 1 < 𝑃) |
| 36 | q1mod 10586 | . . . . . . 7 ⊢ ((𝑃 ∈ ℚ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1) | |
| 37 | 32, 35, 36 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → (1 mod 𝑃) = 1) |
| 38 | 37 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)) → (1 mod 𝑃) = 1) |
| 39 | 30, 38 | eqtr3d 2264 | . . . 4 ⊢ ((𝜑 ∧ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)) → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1) |
| 40 | 39 | ex 115 | . . 3 ⊢ (𝜑 → ((1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1)) |
| 41 | 29, 40 | sylbid 150 | . 2 ⊢ (𝜑 → (((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1)) |
| 42 | 6, 41 | mpd 13 | 1 ⊢ (𝜑 → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∖ cdif 3194 ifcif 3602 {csn 3666 class class class wbr 4083 ↦ cmpt 4145 ‘cfv 5318 (class class class)co 6007 1c1 8008 · cmul 8012 < clt 8189 − cmin 8325 -cneg 8326 / cdiv 8827 ℕcn 9118 2c2 9169 4c4 9171 ℕ0cn0 9377 ℤcz 9454 ℚcq 9822 ...cfz 10212 ⌊cfl 10496 mod cmo 10552 ↑cexp 10768 !cfa 10955 gcd cgcd 12482 ℙcprime 12637 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-caucvg 8127 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-xor 1418 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-frec 6543 df-1o 6568 df-2o 6569 df-oadd 6572 df-er 6688 df-en 6896 df-dom 6897 df-fin 6898 df-sup 7159 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-n0 9378 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-ioo 10096 df-fz 10213 df-fzo 10347 df-fl 10498 df-mod 10553 df-seqfrec 10678 df-exp 10769 df-fac 10956 df-ihash 11006 df-cj 11361 df-re 11362 df-im 11363 df-rsqrt 11517 df-abs 11518 df-clim 11798 df-proddc 12070 df-dvds 12307 df-gcd 12483 df-prm 12638 |
| This theorem is referenced by: gausslemma2d 15756 |
| Copyright terms: Public domain | W3C validator |