| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gausslemma2dlem7 | GIF version | ||
| Description: Lemma 7 for gausslemma2d 15596. (Contributed by AV, 13-Jul-2021.) |
| Ref | Expression |
|---|---|
| gausslemma2d.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
| gausslemma2d.h | ⊢ 𝐻 = ((𝑃 − 1) / 2) |
| gausslemma2d.r | ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) |
| gausslemma2d.m | ⊢ 𝑀 = (⌊‘(𝑃 / 4)) |
| gausslemma2d.n | ⊢ 𝑁 = (𝐻 − 𝑀) |
| Ref | Expression |
|---|---|
| gausslemma2dlem7 | ⊢ (𝜑 → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gausslemma2d.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
| 2 | gausslemma2d.h | . . 3 ⊢ 𝐻 = ((𝑃 − 1) / 2) | |
| 3 | gausslemma2d.r | . . 3 ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) | |
| 4 | gausslemma2d.m | . . 3 ⊢ 𝑀 = (⌊‘(𝑃 / 4)) | |
| 5 | gausslemma2d.n | . . 3 ⊢ 𝑁 = (𝐻 − 𝑀) | |
| 6 | 1, 2, 3, 4, 5 | gausslemma2dlem6 15594 | . 2 ⊢ (𝜑 → ((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃)) |
| 7 | 1, 2 | gausslemma2dlem0b 15577 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐻 ∈ ℕ) |
| 8 | 7 | nnnn0d 9361 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐻 ∈ ℕ0) |
| 9 | 8 | faccld 10894 | . . . . . . . . 9 ⊢ (𝜑 → (!‘𝐻) ∈ ℕ) |
| 10 | 9 | nncnd 9063 | . . . . . . . 8 ⊢ (𝜑 → (!‘𝐻) ∈ ℂ) |
| 11 | 10 | mullidd 8103 | . . . . . . 7 ⊢ (𝜑 → (1 · (!‘𝐻)) = (!‘𝐻)) |
| 12 | 11 | eqcomd 2212 | . . . . . 6 ⊢ (𝜑 → (!‘𝐻) = (1 · (!‘𝐻))) |
| 13 | 12 | oveq1d 5969 | . . . . 5 ⊢ (𝜑 → ((!‘𝐻) mod 𝑃) = ((1 · (!‘𝐻)) mod 𝑃)) |
| 14 | 13 | eqeq1d 2215 | . . . 4 ⊢ (𝜑 → (((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ ((1 · (!‘𝐻)) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃))) |
| 15 | 1zzd 9412 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 16 | neg1z 9417 | . . . . . . 7 ⊢ -1 ∈ ℤ | |
| 17 | 1, 4, 2, 5 | gausslemma2dlem0h 15583 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 18 | zexpcl 10712 | . . . . . . 7 ⊢ ((-1 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) ∈ ℤ) | |
| 19 | 16, 17, 18 | sylancr 414 | . . . . . 6 ⊢ (𝜑 → (-1↑𝑁) ∈ ℤ) |
| 20 | 2z 9413 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 21 | zexpcl 10712 | . . . . . . 7 ⊢ ((2 ∈ ℤ ∧ 𝐻 ∈ ℕ0) → (2↑𝐻) ∈ ℤ) | |
| 22 | 20, 8, 21 | sylancr 414 | . . . . . 6 ⊢ (𝜑 → (2↑𝐻) ∈ ℤ) |
| 23 | 19, 22 | zmulcld 9514 | . . . . 5 ⊢ (𝜑 → ((-1↑𝑁) · (2↑𝐻)) ∈ ℤ) |
| 24 | 9 | nnzd 9507 | . . . . 5 ⊢ (𝜑 → (!‘𝐻) ∈ ℤ) |
| 25 | 1 | gausslemma2dlem0a 15576 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 26 | 1, 2 | gausslemma2dlem0c 15578 | . . . . 5 ⊢ (𝜑 → ((!‘𝐻) gcd 𝑃) = 1) |
| 27 | cncongrcoprm 12478 | . . . . 5 ⊢ (((1 ∈ ℤ ∧ ((-1↑𝑁) · (2↑𝐻)) ∈ ℤ ∧ (!‘𝐻) ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ ((!‘𝐻) gcd 𝑃) = 1)) → (((1 · (!‘𝐻)) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃))) | |
| 28 | 15, 23, 24, 25, 26, 27 | syl32anc 1258 | . . . 4 ⊢ (𝜑 → (((1 · (!‘𝐻)) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃))) |
| 29 | 14, 28 | bitrd 188 | . . 3 ⊢ (𝜑 → (((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃))) |
| 30 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)) → (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)) | |
| 31 | nnq 9767 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℚ) | |
| 32 | 25, 31 | syl 14 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℚ) |
| 33 | 1 | eldifad 3179 | . . . . . . . 8 ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| 34 | prmgt1 12504 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → 1 < 𝑃) | |
| 35 | 33, 34 | syl 14 | . . . . . . 7 ⊢ (𝜑 → 1 < 𝑃) |
| 36 | q1mod 10514 | . . . . . . 7 ⊢ ((𝑃 ∈ ℚ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1) | |
| 37 | 32, 35, 36 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → (1 mod 𝑃) = 1) |
| 38 | 37 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)) → (1 mod 𝑃) = 1) |
| 39 | 30, 38 | eqtr3d 2241 | . . . 4 ⊢ ((𝜑 ∧ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)) → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1) |
| 40 | 39 | ex 115 | . . 3 ⊢ (𝜑 → ((1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1)) |
| 41 | 29, 40 | sylbid 150 | . 2 ⊢ (𝜑 → (((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1)) |
| 42 | 6, 41 | mpd 13 | 1 ⊢ (𝜑 → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ∖ cdif 3165 ifcif 3573 {csn 3635 class class class wbr 4048 ↦ cmpt 4110 ‘cfv 5277 (class class class)co 5954 1c1 7939 · cmul 7943 < clt 8120 − cmin 8256 -cneg 8257 / cdiv 8758 ℕcn 9049 2c2 9100 4c4 9102 ℕ0cn0 9308 ℤcz 9385 ℚcq 9753 ...cfz 10143 ⌊cfl 10424 mod cmo 10480 ↑cexp 10696 !cfa 10883 gcd cgcd 12324 ℙcprime 12479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-precex 8048 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-apti 8053 ax-pre-ltadd 8054 ax-pre-mulgt0 8055 ax-pre-mulext 8056 ax-arch 8057 ax-caucvg 8058 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-xor 1396 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-if 3574 df-pw 3620 df-sn 3641 df-pr 3642 df-tp 3643 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-po 4348 df-iso 4349 df-iord 4418 df-on 4420 df-ilim 4421 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-isom 5286 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-recs 6401 df-irdg 6466 df-frec 6487 df-1o 6512 df-2o 6513 df-oadd 6516 df-er 6630 df-en 6838 df-dom 6839 df-fin 6840 df-sup 7098 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-reap 8661 df-ap 8668 df-div 8759 df-inn 9050 df-2 9108 df-3 9109 df-4 9110 df-5 9111 df-6 9112 df-n0 9309 df-z 9386 df-uz 9662 df-q 9754 df-rp 9789 df-ioo 10027 df-fz 10144 df-fzo 10278 df-fl 10426 df-mod 10481 df-seqfrec 10606 df-exp 10697 df-fac 10884 df-ihash 10934 df-cj 11203 df-re 11204 df-im 11205 df-rsqrt 11359 df-abs 11360 df-clim 11640 df-proddc 11912 df-dvds 12149 df-gcd 12325 df-prm 12480 |
| This theorem is referenced by: gausslemma2d 15596 |
| Copyright terms: Public domain | W3C validator |