| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gausslemma2dlem7 | GIF version | ||
| Description: Lemma 7 for gausslemma2d 15733. (Contributed by AV, 13-Jul-2021.) |
| Ref | Expression |
|---|---|
| gausslemma2d.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
| gausslemma2d.h | ⊢ 𝐻 = ((𝑃 − 1) / 2) |
| gausslemma2d.r | ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) |
| gausslemma2d.m | ⊢ 𝑀 = (⌊‘(𝑃 / 4)) |
| gausslemma2d.n | ⊢ 𝑁 = (𝐻 − 𝑀) |
| Ref | Expression |
|---|---|
| gausslemma2dlem7 | ⊢ (𝜑 → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gausslemma2d.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
| 2 | gausslemma2d.h | . . 3 ⊢ 𝐻 = ((𝑃 − 1) / 2) | |
| 3 | gausslemma2d.r | . . 3 ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) | |
| 4 | gausslemma2d.m | . . 3 ⊢ 𝑀 = (⌊‘(𝑃 / 4)) | |
| 5 | gausslemma2d.n | . . 3 ⊢ 𝑁 = (𝐻 − 𝑀) | |
| 6 | 1, 2, 3, 4, 5 | gausslemma2dlem6 15731 | . 2 ⊢ (𝜑 → ((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃)) |
| 7 | 1, 2 | gausslemma2dlem0b 15714 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐻 ∈ ℕ) |
| 8 | 7 | nnnn0d 9410 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐻 ∈ ℕ0) |
| 9 | 8 | faccld 10945 | . . . . . . . . 9 ⊢ (𝜑 → (!‘𝐻) ∈ ℕ) |
| 10 | 9 | nncnd 9112 | . . . . . . . 8 ⊢ (𝜑 → (!‘𝐻) ∈ ℂ) |
| 11 | 10 | mullidd 8152 | . . . . . . 7 ⊢ (𝜑 → (1 · (!‘𝐻)) = (!‘𝐻)) |
| 12 | 11 | eqcomd 2235 | . . . . . 6 ⊢ (𝜑 → (!‘𝐻) = (1 · (!‘𝐻))) |
| 13 | 12 | oveq1d 6009 | . . . . 5 ⊢ (𝜑 → ((!‘𝐻) mod 𝑃) = ((1 · (!‘𝐻)) mod 𝑃)) |
| 14 | 13 | eqeq1d 2238 | . . . 4 ⊢ (𝜑 → (((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ ((1 · (!‘𝐻)) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃))) |
| 15 | 1zzd 9461 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 16 | neg1z 9466 | . . . . . . 7 ⊢ -1 ∈ ℤ | |
| 17 | 1, 4, 2, 5 | gausslemma2dlem0h 15720 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 18 | zexpcl 10763 | . . . . . . 7 ⊢ ((-1 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) ∈ ℤ) | |
| 19 | 16, 17, 18 | sylancr 414 | . . . . . 6 ⊢ (𝜑 → (-1↑𝑁) ∈ ℤ) |
| 20 | 2z 9462 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 21 | zexpcl 10763 | . . . . . . 7 ⊢ ((2 ∈ ℤ ∧ 𝐻 ∈ ℕ0) → (2↑𝐻) ∈ ℤ) | |
| 22 | 20, 8, 21 | sylancr 414 | . . . . . 6 ⊢ (𝜑 → (2↑𝐻) ∈ ℤ) |
| 23 | 19, 22 | zmulcld 9563 | . . . . 5 ⊢ (𝜑 → ((-1↑𝑁) · (2↑𝐻)) ∈ ℤ) |
| 24 | 9 | nnzd 9556 | . . . . 5 ⊢ (𝜑 → (!‘𝐻) ∈ ℤ) |
| 25 | 1 | gausslemma2dlem0a 15713 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 26 | 1, 2 | gausslemma2dlem0c 15715 | . . . . 5 ⊢ (𝜑 → ((!‘𝐻) gcd 𝑃) = 1) |
| 27 | cncongrcoprm 12614 | . . . . 5 ⊢ (((1 ∈ ℤ ∧ ((-1↑𝑁) · (2↑𝐻)) ∈ ℤ ∧ (!‘𝐻) ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ ((!‘𝐻) gcd 𝑃) = 1)) → (((1 · (!‘𝐻)) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃))) | |
| 28 | 15, 23, 24, 25, 26, 27 | syl32anc 1279 | . . . 4 ⊢ (𝜑 → (((1 · (!‘𝐻)) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃))) |
| 29 | 14, 28 | bitrd 188 | . . 3 ⊢ (𝜑 → (((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃))) |
| 30 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)) → (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)) | |
| 31 | nnq 9816 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℚ) | |
| 32 | 25, 31 | syl 14 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℚ) |
| 33 | 1 | eldifad 3208 | . . . . . . . 8 ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| 34 | prmgt1 12640 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → 1 < 𝑃) | |
| 35 | 33, 34 | syl 14 | . . . . . . 7 ⊢ (𝜑 → 1 < 𝑃) |
| 36 | q1mod 10565 | . . . . . . 7 ⊢ ((𝑃 ∈ ℚ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1) | |
| 37 | 32, 35, 36 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → (1 mod 𝑃) = 1) |
| 38 | 37 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)) → (1 mod 𝑃) = 1) |
| 39 | 30, 38 | eqtr3d 2264 | . . . 4 ⊢ ((𝜑 ∧ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)) → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1) |
| 40 | 39 | ex 115 | . . 3 ⊢ (𝜑 → ((1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1)) |
| 41 | 29, 40 | sylbid 150 | . 2 ⊢ (𝜑 → (((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1)) |
| 42 | 6, 41 | mpd 13 | 1 ⊢ (𝜑 → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∖ cdif 3194 ifcif 3602 {csn 3666 class class class wbr 4082 ↦ cmpt 4144 ‘cfv 5314 (class class class)co 5994 1c1 7988 · cmul 7992 < clt 8169 − cmin 8305 -cneg 8306 / cdiv 8807 ℕcn 9098 2c2 9149 4c4 9151 ℕ0cn0 9357 ℤcz 9434 ℚcq 9802 ...cfz 10192 ⌊cfl 10475 mod cmo 10531 ↑cexp 10747 !cfa 10934 gcd cgcd 12460 ℙcprime 12615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 ax-caucvg 8107 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-xor 1418 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-isom 5323 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-irdg 6506 df-frec 6527 df-1o 6552 df-2o 6553 df-oadd 6556 df-er 6670 df-en 6878 df-dom 6879 df-fin 6880 df-sup 7139 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-5 9160 df-6 9161 df-n0 9358 df-z 9435 df-uz 9711 df-q 9803 df-rp 9838 df-ioo 10076 df-fz 10193 df-fzo 10327 df-fl 10477 df-mod 10532 df-seqfrec 10657 df-exp 10748 df-fac 10935 df-ihash 10985 df-cj 11339 df-re 11340 df-im 11341 df-rsqrt 11495 df-abs 11496 df-clim 11776 df-proddc 12048 df-dvds 12285 df-gcd 12461 df-prm 12616 |
| This theorem is referenced by: gausslemma2d 15733 |
| Copyright terms: Public domain | W3C validator |