ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem18 GIF version

Theorem 4sqlem18 12577
Description: Lemma for 4sq 12579. Inductive step, odd prime case. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
4sqlem11.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
4sq.2 (𝜑𝑁 ∈ ℕ)
4sq.3 (𝜑𝑃 = ((2 · 𝑁) + 1))
4sq.4 (𝜑𝑃 ∈ ℙ)
4sq.5 (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆)
4sq.6 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}
4sq.7 𝑀 = inf(𝑇, ℝ, < )
Assertion
Ref Expression
4sqlem18 (𝜑𝑃𝑆)
Distinct variable groups:   𝑖,𝑀,𝑛   𝑛,𝑁   𝑃,𝑖,𝑛,𝑤,𝑥,𝑦,𝑧   𝑆,𝑖,𝑛   𝑇,𝑖   𝜑,𝑖,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝑆(𝑥,𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑛)   𝑀(𝑥,𝑦,𝑧,𝑤)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑖)

Proof of Theorem 4sqlem18
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4sq.4 . . . . 5 (𝜑𝑃 ∈ ℙ)
2 prmnn 12278 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
31, 2syl 14 . . . 4 (𝜑𝑃 ∈ ℕ)
43nncnd 9004 . . 3 (𝜑𝑃 ∈ ℂ)
54mullidd 8044 . 2 (𝜑 → (1 · 𝑃) = 𝑃)
6 4sq.7 . . . . . . . . . . . 12 𝑀 = inf(𝑇, ℝ, < )
7 4sqlem11.1 . . . . . . . . . . . . . . 15 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
8 4sq.2 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℕ)
9 4sq.3 . . . . . . . . . . . . . . 15 (𝜑𝑃 = ((2 · 𝑁) + 1))
10 4sq.5 . . . . . . . . . . . . . . 15 (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆)
11 4sq.6 . . . . . . . . . . . . . . 15 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}
127, 8, 9, 1, 10, 11, 64sqlem13m 12572 . . . . . . . . . . . . . 14 (𝜑 → (∃𝑗 𝑗𝑇𝑀 < 𝑃))
1312simpld 112 . . . . . . . . . . . . 13 (𝜑 → ∃𝑗 𝑗𝑇)
14 1zzd 9353 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑇) → 1 ∈ ℤ)
15 nnuz 9637 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
1615rabeqi 2756 . . . . . . . . . . . . . . 15 {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆} = {𝑖 ∈ (ℤ‘1) ∣ (𝑖 · 𝑃) ∈ 𝑆}
1711, 16eqtri 2217 . . . . . . . . . . . . . 14 𝑇 = {𝑖 ∈ (ℤ‘1) ∣ (𝑖 · 𝑃) ∈ 𝑆}
18 simpr 110 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑇) → 𝑗𝑇)
19 elfznn 10129 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (1...𝑗) → 𝑖 ∈ ℕ)
2019adantl 277 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑇) ∧ 𝑖 ∈ (1...𝑗)) → 𝑖 ∈ ℕ)
213ad2antrr 488 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑇) ∧ 𝑖 ∈ (1...𝑗)) → 𝑃 ∈ ℕ)
2220, 21nnmulcld 9039 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑇) ∧ 𝑖 ∈ (1...𝑗)) → (𝑖 · 𝑃) ∈ ℕ)
2322nnnn0d 9302 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑇) ∧ 𝑖 ∈ (1...𝑗)) → (𝑖 · 𝑃) ∈ ℕ0)
2474sqlemsdc 12569 . . . . . . . . . . . . . . 15 ((𝑖 · 𝑃) ∈ ℕ0DECID (𝑖 · 𝑃) ∈ 𝑆)
2523, 24syl 14 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑇) ∧ 𝑖 ∈ (1...𝑗)) → DECID (𝑖 · 𝑃) ∈ 𝑆)
2614, 17, 18, 25infssuzcldc 10325 . . . . . . . . . . . . 13 ((𝜑𝑗𝑇) → inf(𝑇, ℝ, < ) ∈ 𝑇)
2713, 26exlimddv 1913 . . . . . . . . . . . 12 (𝜑 → inf(𝑇, ℝ, < ) ∈ 𝑇)
286, 27eqeltrid 2283 . . . . . . . . . . 11 (𝜑𝑀𝑇)
29 oveq1 5929 . . . . . . . . . . . . 13 (𝑖 = 𝑀 → (𝑖 · 𝑃) = (𝑀 · 𝑃))
3029eleq1d 2265 . . . . . . . . . . . 12 (𝑖 = 𝑀 → ((𝑖 · 𝑃) ∈ 𝑆 ↔ (𝑀 · 𝑃) ∈ 𝑆))
3130, 11elrab2 2923 . . . . . . . . . . 11 (𝑀𝑇 ↔ (𝑀 ∈ ℕ ∧ (𝑀 · 𝑃) ∈ 𝑆))
3228, 31sylib 122 . . . . . . . . . 10 (𝜑 → (𝑀 ∈ ℕ ∧ (𝑀 · 𝑃) ∈ 𝑆))
3332simprd 114 . . . . . . . . 9 (𝜑 → (𝑀 · 𝑃) ∈ 𝑆)
3474sqlem2 12558 . . . . . . . . 9 ((𝑀 · 𝑃) ∈ 𝑆 ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
3533, 34sylib 122 . . . . . . . 8 (𝜑 → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
3635adantr 276 . . . . . . 7 ((𝜑𝑀 ∈ (ℤ‘2)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
37 simp1l 1023 . . . . . . . . . . . . . 14 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝜑)
3837, 8syl 14 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝑁 ∈ ℕ)
3937, 9syl 14 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝑃 = ((2 · 𝑁) + 1))
4037, 1syl 14 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝑃 ∈ ℙ)
4137, 10syl 14 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → (0...(2 · 𝑁)) ⊆ 𝑆)
42 simp1r 1024 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝑀 ∈ (ℤ‘2))
43 simp2ll 1066 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝑎 ∈ ℤ)
44 simp2lr 1067 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝑏 ∈ ℤ)
45 simp2rl 1068 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝑐 ∈ ℤ)
46 simp2rr 1069 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝑑 ∈ ℤ)
47 eqid 2196 . . . . . . . . . . . . 13 (((𝑎 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) = (((𝑎 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
48 eqid 2196 . . . . . . . . . . . . 13 (((𝑏 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) = (((𝑏 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
49 eqid 2196 . . . . . . . . . . . . 13 (((𝑐 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) = (((𝑐 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
50 eqid 2196 . . . . . . . . . . . . 13 (((𝑑 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) = (((𝑑 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
51 eqid 2196 . . . . . . . . . . . . 13 (((((((𝑎 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))↑2) + ((((𝑏 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))↑2)) + (((((𝑐 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))↑2) + ((((𝑑 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))↑2))) / 𝑀) = (((((((𝑎 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))↑2) + ((((𝑏 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))↑2)) + (((((𝑐 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))↑2) + ((((𝑑 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))↑2))) / 𝑀)
52 simp3 1001 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
537, 38, 39, 40, 41, 11, 6, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 524sqlem17 12576 . . . . . . . . . . . 12 ¬ ((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
5453pm2.21i 647 . . . . . . . . . . 11 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → ¬ 𝑀 ∈ (ℤ‘2))
55543expia 1207 . . . . . . . . . 10 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ))) → ((𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → ¬ 𝑀 ∈ (ℤ‘2)))
5655anassrs 400 . . . . . . . . 9 ((((𝜑𝑀 ∈ (ℤ‘2)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → ((𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → ¬ 𝑀 ∈ (ℤ‘2)))
5756rexlimdvva 2622 . . . . . . . 8 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → ¬ 𝑀 ∈ (ℤ‘2)))
5857rexlimdvva 2622 . . . . . . 7 ((𝜑𝑀 ∈ (ℤ‘2)) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → ¬ 𝑀 ∈ (ℤ‘2)))
5936, 58mpd 13 . . . . . 6 ((𝜑𝑀 ∈ (ℤ‘2)) → ¬ 𝑀 ∈ (ℤ‘2))
6059pm2.01da 637 . . . . 5 (𝜑 → ¬ 𝑀 ∈ (ℤ‘2))
6132simpld 112 . . . . . 6 (𝜑𝑀 ∈ ℕ)
62 elnn1uz2 9681 . . . . . 6 (𝑀 ∈ ℕ ↔ (𝑀 = 1 ∨ 𝑀 ∈ (ℤ‘2)))
6361, 62sylib 122 . . . . 5 (𝜑 → (𝑀 = 1 ∨ 𝑀 ∈ (ℤ‘2)))
6460, 63ecased 1360 . . . 4 (𝜑𝑀 = 1)
6564, 28eqeltrrd 2274 . . 3 (𝜑 → 1 ∈ 𝑇)
66 oveq1 5929 . . . . . 6 (𝑖 = 1 → (𝑖 · 𝑃) = (1 · 𝑃))
6766eleq1d 2265 . . . . 5 (𝑖 = 1 → ((𝑖 · 𝑃) ∈ 𝑆 ↔ (1 · 𝑃) ∈ 𝑆))
6867, 11elrab2 2923 . . . 4 (1 ∈ 𝑇 ↔ (1 ∈ ℕ ∧ (1 · 𝑃) ∈ 𝑆))
6968simprbi 275 . . 3 (1 ∈ 𝑇 → (1 · 𝑃) ∈ 𝑆)
7065, 69syl 14 . 2 (𝜑 → (1 · 𝑃) ∈ 𝑆)
715, 70eqeltrrd 2274 1 (𝜑𝑃𝑆)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wex 1506  wcel 2167  {cab 2182  wrex 2476  {crab 2479  wss 3157   class class class wbr 4033  cfv 5258  (class class class)co 5922  infcinf 7049  cr 7878  0cc0 7879  1c1 7880   + caddc 7882   · cmul 7884   < clt 8061  cmin 8197   / cdiv 8699  cn 8990  2c2 9041  0cn0 9249  cz 9326  cuz 9601  ...cfz 10083   mod cmo 10414  cexp 10630  cprime 12275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-dvds 11953  df-gcd 12121  df-prm 12276  df-gz 12539
This theorem is referenced by:  4sqlem19  12578
  Copyright terms: Public domain W3C validator