ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsquad2lem1 GIF version

Theorem lgsquad2lem1 15768
Description: Lemma for lgsquad2 15770. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
lgsquad2.1 (𝜑𝑀 ∈ ℕ)
lgsquad2.2 (𝜑 → ¬ 2 ∥ 𝑀)
lgsquad2.3 (𝜑𝑁 ∈ ℕ)
lgsquad2.4 (𝜑 → ¬ 2 ∥ 𝑁)
lgsquad2.5 (𝜑 → (𝑀 gcd 𝑁) = 1)
lgsquad2lem1.a (𝜑𝐴 ∈ ℕ)
lgsquad2lem1.b (𝜑𝐵 ∈ ℕ)
lgsquad2lem1.m (𝜑 → (𝐴 · 𝐵) = 𝑀)
lgsquad2lem1.1 (𝜑 → ((𝐴 /L 𝑁) · (𝑁 /L 𝐴)) = (-1↑(((𝐴 − 1) / 2) · ((𝑁 − 1) / 2))))
lgsquad2lem1.2 (𝜑 → ((𝐵 /L 𝑁) · (𝑁 /L 𝐵)) = (-1↑(((𝐵 − 1) / 2) · ((𝑁 − 1) / 2))))
Assertion
Ref Expression
lgsquad2lem1 (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))))

Proof of Theorem lgsquad2lem1
StepHypRef Expression
1 lgsquad2lem1.m . . . . . . . . . . 11 (𝜑 → (𝐴 · 𝐵) = 𝑀)
2 lgsquad2lem1.a . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℕ)
32nnzd 9576 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℤ)
43zcnd 9578 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℂ)
5 ax-1cn 8100 . . . . . . . . . . . . . 14 1 ∈ ℂ
6 npcan 8363 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) + 1) = 𝐴)
74, 5, 6sylancl 413 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 − 1) + 1) = 𝐴)
8 lgsquad2lem1.b . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℕ)
98nnzd 9576 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℤ)
109zcnd 9578 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℂ)
11 npcan 8363 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐵 − 1) + 1) = 𝐵)
1210, 5, 11sylancl 413 . . . . . . . . . . . . 13 (𝜑 → ((𝐵 − 1) + 1) = 𝐵)
137, 12oveq12d 6025 . . . . . . . . . . . 12 (𝜑 → (((𝐴 − 1) + 1) · ((𝐵 − 1) + 1)) = (𝐴 · 𝐵))
14 peano2zm 9492 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℤ)
153, 14syl 14 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 − 1) ∈ ℤ)
1615zcnd 9578 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 − 1) ∈ ℂ)
175a1i 9 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℂ)
18 peano2zm 9492 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℤ → (𝐵 − 1) ∈ ℤ)
199, 18syl 14 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 − 1) ∈ ℤ)
2019zcnd 9578 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 − 1) ∈ ℂ)
2116, 17, 20, 17muladdd 8570 . . . . . . . . . . . . 13 (𝜑 → (((𝐴 − 1) + 1) · ((𝐵 − 1) + 1)) = ((((𝐴 − 1) · (𝐵 − 1)) + (1 · 1)) + (((𝐴 − 1) · 1) + ((𝐵 − 1) · 1))))
22 1t1e1 9271 . . . . . . . . . . . . . . . 16 (1 · 1) = 1
2322a1i 9 . . . . . . . . . . . . . . 15 (𝜑 → (1 · 1) = 1)
2423oveq2d 6023 . . . . . . . . . . . . . 14 (𝜑 → (((𝐴 − 1) · (𝐵 − 1)) + (1 · 1)) = (((𝐴 − 1) · (𝐵 − 1)) + 1))
2516mulridd 8171 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 − 1) · 1) = (𝐴 − 1))
2620mulridd 8171 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵 − 1) · 1) = (𝐵 − 1))
2725, 26oveq12d 6025 . . . . . . . . . . . . . 14 (𝜑 → (((𝐴 − 1) · 1) + ((𝐵 − 1) · 1)) = ((𝐴 − 1) + (𝐵 − 1)))
2824, 27oveq12d 6025 . . . . . . . . . . . . 13 (𝜑 → ((((𝐴 − 1) · (𝐵 − 1)) + (1 · 1)) + (((𝐴 − 1) · 1) + ((𝐵 − 1) · 1))) = ((((𝐴 − 1) · (𝐵 − 1)) + 1) + ((𝐴 − 1) + (𝐵 − 1))))
2921, 28eqtrd 2262 . . . . . . . . . . . 12 (𝜑 → (((𝐴 − 1) + 1) · ((𝐵 − 1) + 1)) = ((((𝐴 − 1) · (𝐵 − 1)) + 1) + ((𝐴 − 1) + (𝐵 − 1))))
3013, 29eqtr3d 2264 . . . . . . . . . . 11 (𝜑 → (𝐴 · 𝐵) = ((((𝐴 − 1) · (𝐵 − 1)) + 1) + ((𝐴 − 1) + (𝐵 − 1))))
311, 30eqtr3d 2264 . . . . . . . . . 10 (𝜑𝑀 = ((((𝐴 − 1) · (𝐵 − 1)) + 1) + ((𝐴 − 1) + (𝐵 − 1))))
3231oveq1d 6022 . . . . . . . . 9 (𝜑 → (𝑀 − 1) = (((((𝐴 − 1) · (𝐵 − 1)) + 1) + ((𝐴 − 1) + (𝐵 − 1))) − 1))
3316, 20mulcld 8175 . . . . . . . . . . 11 (𝜑 → ((𝐴 − 1) · (𝐵 − 1)) ∈ ℂ)
34 addcl 8132 . . . . . . . . . . 11 ((((𝐴 − 1) · (𝐵 − 1)) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐴 − 1) · (𝐵 − 1)) + 1) ∈ ℂ)
3533, 5, 34sylancl 413 . . . . . . . . . 10 (𝜑 → (((𝐴 − 1) · (𝐵 − 1)) + 1) ∈ ℂ)
3616, 20addcld 8174 . . . . . . . . . 10 (𝜑 → ((𝐴 − 1) + (𝐵 − 1)) ∈ ℂ)
3735, 36, 17addsubd 8486 . . . . . . . . 9 (𝜑 → (((((𝐴 − 1) · (𝐵 − 1)) + 1) + ((𝐴 − 1) + (𝐵 − 1))) − 1) = (((((𝐴 − 1) · (𝐵 − 1)) + 1) − 1) + ((𝐴 − 1) + (𝐵 − 1))))
38 pncan 8360 . . . . . . . . . . 11 ((((𝐴 − 1) · (𝐵 − 1)) ∈ ℂ ∧ 1 ∈ ℂ) → ((((𝐴 − 1) · (𝐵 − 1)) + 1) − 1) = ((𝐴 − 1) · (𝐵 − 1)))
3933, 5, 38sylancl 413 . . . . . . . . . 10 (𝜑 → ((((𝐴 − 1) · (𝐵 − 1)) + 1) − 1) = ((𝐴 − 1) · (𝐵 − 1)))
4039oveq1d 6022 . . . . . . . . 9 (𝜑 → (((((𝐴 − 1) · (𝐵 − 1)) + 1) − 1) + ((𝐴 − 1) + (𝐵 − 1))) = (((𝐴 − 1) · (𝐵 − 1)) + ((𝐴 − 1) + (𝐵 − 1))))
4132, 37, 403eqtrd 2266 . . . . . . . 8 (𝜑 → (𝑀 − 1) = (((𝐴 − 1) · (𝐵 − 1)) + ((𝐴 − 1) + (𝐵 − 1))))
4241oveq1d 6022 . . . . . . 7 (𝜑 → ((𝑀 − 1) / 2) = ((((𝐴 − 1) · (𝐵 − 1)) + ((𝐴 − 1) + (𝐵 − 1))) / 2))
43 2cnd 9191 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
44 2ap0 9211 . . . . . . . . 9 2 # 0
4544a1i 9 . . . . . . . 8 (𝜑 → 2 # 0)
4633, 36, 43, 45divdirapd 8984 . . . . . . 7 (𝜑 → ((((𝐴 − 1) · (𝐵 − 1)) + ((𝐴 − 1) + (𝐵 − 1))) / 2) = ((((𝐴 − 1) · (𝐵 − 1)) / 2) + (((𝐴 − 1) + (𝐵 − 1)) / 2)))
4716, 20, 43, 45divassapd 8981 . . . . . . . . 9 (𝜑 → (((𝐴 − 1) · (𝐵 − 1)) / 2) = ((𝐴 − 1) · ((𝐵 − 1) / 2)))
4816, 43, 45divcanap2d 8947 . . . . . . . . . 10 (𝜑 → (2 · ((𝐴 − 1) / 2)) = (𝐴 − 1))
4948oveq1d 6022 . . . . . . . . 9 (𝜑 → ((2 · ((𝐴 − 1) / 2)) · ((𝐵 − 1) / 2)) = ((𝐴 − 1) · ((𝐵 − 1) / 2)))
50 lgsquad2.2 . . . . . . . . . . . . . 14 (𝜑 → ¬ 2 ∥ 𝑀)
51 dvdsmul1 12332 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∥ (𝐴 · 𝐵))
523, 9, 51syl2anc 411 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∥ (𝐴 · 𝐵))
5352, 1breqtrd 4109 . . . . . . . . . . . . . . 15 (𝜑𝐴𝑀)
54 2z 9482 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
55 lgsquad2.1 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℕ)
5655nnzd 9576 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℤ)
57 dvdstr 12347 . . . . . . . . . . . . . . . 16 ((2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((2 ∥ 𝐴𝐴𝑀) → 2 ∥ 𝑀))
5854, 3, 56, 57mp3an2i 1376 . . . . . . . . . . . . . . 15 (𝜑 → ((2 ∥ 𝐴𝐴𝑀) → 2 ∥ 𝑀))
5953, 58mpan2d 428 . . . . . . . . . . . . . 14 (𝜑 → (2 ∥ 𝐴 → 2 ∥ 𝑀))
6050, 59mtod 667 . . . . . . . . . . . . 13 (𝜑 → ¬ 2 ∥ 𝐴)
61 1zzd 9481 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℤ)
62 2prm 12657 . . . . . . . . . . . . . 14 2 ∈ ℙ
63 nprmdvds1 12670 . . . . . . . . . . . . . 14 (2 ∈ ℙ → ¬ 2 ∥ 1)
6462, 63mp1i 10 . . . . . . . . . . . . 13 (𝜑 → ¬ 2 ∥ 1)
65 omoe 12415 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝐴 − 1))
663, 60, 61, 64, 65syl22anc 1272 . . . . . . . . . . . 12 (𝜑 → 2 ∥ (𝐴 − 1))
67 2ne0 9210 . . . . . . . . . . . . . 14 2 ≠ 0
6867a1i 9 . . . . . . . . . . . . 13 (𝜑 → 2 ≠ 0)
69 dvdsval2 12309 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ (𝐴 − 1) ∈ ℤ) → (2 ∥ (𝐴 − 1) ↔ ((𝐴 − 1) / 2) ∈ ℤ))
7054, 68, 15, 69mp3an2i 1376 . . . . . . . . . . . 12 (𝜑 → (2 ∥ (𝐴 − 1) ↔ ((𝐴 − 1) / 2) ∈ ℤ))
7166, 70mpbid 147 . . . . . . . . . . 11 (𝜑 → ((𝐴 − 1) / 2) ∈ ℤ)
7271zcnd 9578 . . . . . . . . . 10 (𝜑 → ((𝐴 − 1) / 2) ∈ ℂ)
73 dvdsmul2 12333 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∥ (𝐴 · 𝐵))
743, 9, 73syl2anc 411 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∥ (𝐴 · 𝐵))
7574, 1breqtrd 4109 . . . . . . . . . . . . . . 15 (𝜑𝐵𝑀)
76 dvdstr 12347 . . . . . . . . . . . . . . . 16 ((2 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((2 ∥ 𝐵𝐵𝑀) → 2 ∥ 𝑀))
7754, 9, 56, 76mp3an2i 1376 . . . . . . . . . . . . . . 15 (𝜑 → ((2 ∥ 𝐵𝐵𝑀) → 2 ∥ 𝑀))
7875, 77mpan2d 428 . . . . . . . . . . . . . 14 (𝜑 → (2 ∥ 𝐵 → 2 ∥ 𝑀))
7950, 78mtod 667 . . . . . . . . . . . . 13 (𝜑 → ¬ 2 ∥ 𝐵)
80 omoe 12415 . . . . . . . . . . . . 13 (((𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝐵 − 1))
819, 79, 61, 64, 80syl22anc 1272 . . . . . . . . . . . 12 (𝜑 → 2 ∥ (𝐵 − 1))
82 dvdsval2 12309 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ (𝐵 − 1) ∈ ℤ) → (2 ∥ (𝐵 − 1) ↔ ((𝐵 − 1) / 2) ∈ ℤ))
8354, 68, 19, 82mp3an2i 1376 . . . . . . . . . . . 12 (𝜑 → (2 ∥ (𝐵 − 1) ↔ ((𝐵 − 1) / 2) ∈ ℤ))
8481, 83mpbid 147 . . . . . . . . . . 11 (𝜑 → ((𝐵 − 1) / 2) ∈ ℤ)
8584zcnd 9578 . . . . . . . . . 10 (𝜑 → ((𝐵 − 1) / 2) ∈ ℂ)
8643, 72, 85mulassd 8178 . . . . . . . . 9 (𝜑 → ((2 · ((𝐴 − 1) / 2)) · ((𝐵 − 1) / 2)) = (2 · (((𝐴 − 1) / 2) · ((𝐵 − 1) / 2))))
8747, 49, 863eqtr2d 2268 . . . . . . . 8 (𝜑 → (((𝐴 − 1) · (𝐵 − 1)) / 2) = (2 · (((𝐴 − 1) / 2) · ((𝐵 − 1) / 2))))
8816, 20, 43, 45divdirapd 8984 . . . . . . . 8 (𝜑 → (((𝐴 − 1) + (𝐵 − 1)) / 2) = (((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)))
8987, 88oveq12d 6025 . . . . . . 7 (𝜑 → ((((𝐴 − 1) · (𝐵 − 1)) / 2) + (((𝐴 − 1) + (𝐵 − 1)) / 2)) = ((2 · (((𝐴 − 1) / 2) · ((𝐵 − 1) / 2))) + (((𝐴 − 1) / 2) + ((𝐵 − 1) / 2))))
9042, 46, 893eqtrd 2266 . . . . . 6 (𝜑 → ((𝑀 − 1) / 2) = ((2 · (((𝐴 − 1) / 2) · ((𝐵 − 1) / 2))) + (((𝐴 − 1) / 2) + ((𝐵 − 1) / 2))))
9190oveq1d 6022 . . . . 5 (𝜑 → (((𝑀 − 1) / 2) · ((𝑁 − 1) / 2)) = (((2 · (((𝐴 − 1) / 2) · ((𝐵 − 1) / 2))) + (((𝐴 − 1) / 2) + ((𝐵 − 1) / 2))) · ((𝑁 − 1) / 2)))
9254a1i 9 . . . . . . . 8 (𝜑 → 2 ∈ ℤ)
9371, 84zmulcld 9583 . . . . . . . 8 (𝜑 → (((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) ∈ ℤ)
9492, 93zmulcld 9583 . . . . . . 7 (𝜑 → (2 · (((𝐴 − 1) / 2) · ((𝐵 − 1) / 2))) ∈ ℤ)
9594zcnd 9578 . . . . . 6 (𝜑 → (2 · (((𝐴 − 1) / 2) · ((𝐵 − 1) / 2))) ∈ ℂ)
9671, 84zaddcld 9581 . . . . . . 7 (𝜑 → (((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) ∈ ℤ)
9796zcnd 9578 . . . . . 6 (𝜑 → (((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) ∈ ℂ)
98 lgsquad2.3 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
9998nnzd 9576 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
100 lgsquad2.4 . . . . . . . . 9 (𝜑 → ¬ 2 ∥ 𝑁)
101 omoe 12415 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝑁 − 1))
10299, 100, 61, 64, 101syl22anc 1272 . . . . . . . 8 (𝜑 → 2 ∥ (𝑁 − 1))
103 peano2zm 9492 . . . . . . . . . 10 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
10499, 103syl 14 . . . . . . . . 9 (𝜑 → (𝑁 − 1) ∈ ℤ)
105 dvdsval2 12309 . . . . . . . . 9 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ (𝑁 − 1) ∈ ℤ) → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈ ℤ))
10654, 68, 104, 105mp3an2i 1376 . . . . . . . 8 (𝜑 → (2 ∥ (𝑁 − 1) ↔ ((𝑁 − 1) / 2) ∈ ℤ))
107102, 106mpbid 147 . . . . . . 7 (𝜑 → ((𝑁 − 1) / 2) ∈ ℤ)
108107zcnd 9578 . . . . . 6 (𝜑 → ((𝑁 − 1) / 2) ∈ ℂ)
10995, 97, 108adddird 8180 . . . . 5 (𝜑 → (((2 · (((𝐴 − 1) / 2) · ((𝐵 − 1) / 2))) + (((𝐴 − 1) / 2) + ((𝐵 − 1) / 2))) · ((𝑁 − 1) / 2)) = (((2 · (((𝐴 − 1) / 2) · ((𝐵 − 1) / 2))) · ((𝑁 − 1) / 2)) + ((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))))
11093zcnd 9578 . . . . . . 7 (𝜑 → (((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) ∈ ℂ)
11143, 110, 108mulassd 8178 . . . . . 6 (𝜑 → ((2 · (((𝐴 − 1) / 2) · ((𝐵 − 1) / 2))) · ((𝑁 − 1) / 2)) = (2 · ((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))))
112111oveq1d 6022 . . . . 5 (𝜑 → (((2 · (((𝐴 − 1) / 2) · ((𝐵 − 1) / 2))) · ((𝑁 − 1) / 2)) + ((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))) = ((2 · ((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))) + ((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))))
11391, 109, 1123eqtrd 2266 . . . 4 (𝜑 → (((𝑀 − 1) / 2) · ((𝑁 − 1) / 2)) = ((2 · ((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))) + ((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))))
114113oveq2d 6023 . . 3 (𝜑 → (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) = (-1↑((2 · ((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))) + ((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))))
115 neg1cn 9223 . . . . . 6 -1 ∈ ℂ
116115a1i 9 . . . . 5 (𝜑 → -1 ∈ ℂ)
117 neg1ap0 9227 . . . . . 6 -1 # 0
118117a1i 9 . . . . 5 (𝜑 → -1 # 0)
11993, 107zmulcld 9583 . . . . . 6 (𝜑 → ((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)) ∈ ℤ)
12092, 119zmulcld 9583 . . . . 5 (𝜑 → (2 · ((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))) ∈ ℤ)
12196, 107zmulcld 9583 . . . . 5 (𝜑 → ((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)) ∈ ℤ)
122 expaddzap 10813 . . . . 5 (((-1 ∈ ℂ ∧ -1 # 0) ∧ ((2 · ((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))) ∈ ℤ ∧ ((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)) ∈ ℤ)) → (-1↑((2 · ((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))) + ((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))) = ((-1↑(2 · ((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))) · (-1↑((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))))
123116, 118, 120, 121, 122syl22anc 1272 . . . 4 (𝜑 → (-1↑((2 · ((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))) + ((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))) = ((-1↑(2 · ((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))) · (-1↑((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))))
124 expmulzap 10815 . . . . . . 7 (((-1 ∈ ℂ ∧ -1 # 0) ∧ (2 ∈ ℤ ∧ ((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)) ∈ ℤ)) → (-1↑(2 · ((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))) = ((-1↑2)↑((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))))
125116, 118, 92, 119, 124syl22anc 1272 . . . . . 6 (𝜑 → (-1↑(2 · ((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))) = ((-1↑2)↑((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))))
126 neg1sqe1 10864 . . . . . . . 8 (-1↑2) = 1
127126oveq1i 6017 . . . . . . 7 ((-1↑2)↑((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))) = (1↑((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))
128 1exp 10798 . . . . . . . 8 (((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)) ∈ ℤ → (1↑((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))) = 1)
129119, 128syl 14 . . . . . . 7 (𝜑 → (1↑((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))) = 1)
130127, 129eqtrid 2274 . . . . . 6 (𝜑 → ((-1↑2)↑((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))) = 1)
131125, 130eqtrd 2262 . . . . 5 (𝜑 → (-1↑(2 · ((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))) = 1)
132131oveq1d 6022 . . . 4 (𝜑 → ((-1↑(2 · ((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))) · (-1↑((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))) = (1 · (-1↑((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))))
133123, 132eqtrd 2262 . . 3 (𝜑 → (-1↑((2 · ((((𝐴 − 1) / 2) · ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))) + ((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))) = (1 · (-1↑((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))))
134116, 118, 121expclzapd 10908 . . . . 5 (𝜑 → (-1↑((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))) ∈ ℂ)
135134mullidd 8172 . . . 4 (𝜑 → (1 · (-1↑((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))) = (-1↑((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))))
13672, 85, 108adddird 8180 . . . . 5 (𝜑 → ((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)) = ((((𝐴 − 1) / 2) · ((𝑁 − 1) / 2)) + (((𝐵 − 1) / 2) · ((𝑁 − 1) / 2))))
137136oveq2d 6023 . . . 4 (𝜑 → (-1↑((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2))) = (-1↑((((𝐴 − 1) / 2) · ((𝑁 − 1) / 2)) + (((𝐵 − 1) / 2) · ((𝑁 − 1) / 2)))))
138135, 137eqtrd 2262 . . 3 (𝜑 → (1 · (-1↑((((𝐴 − 1) / 2) + ((𝐵 − 1) / 2)) · ((𝑁 − 1) / 2)))) = (-1↑((((𝐴 − 1) / 2) · ((𝑁 − 1) / 2)) + (((𝐵 − 1) / 2) · ((𝑁 − 1) / 2)))))
139114, 133, 1383eqtrd 2266 . 2 (𝜑 → (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) = (-1↑((((𝐴 − 1) / 2) · ((𝑁 − 1) / 2)) + (((𝐵 − 1) / 2) · ((𝑁 − 1) / 2)))))
140 lgsquad2lem1.1 . . . 4 (𝜑 → ((𝐴 /L 𝑁) · (𝑁 /L 𝐴)) = (-1↑(((𝐴 − 1) / 2) · ((𝑁 − 1) / 2))))
141 lgsquad2lem1.2 . . . 4 (𝜑 → ((𝐵 /L 𝑁) · (𝑁 /L 𝐵)) = (-1↑(((𝐵 − 1) / 2) · ((𝑁 − 1) / 2))))
142140, 141oveq12d 6025 . . 3 (𝜑 → (((𝐴 /L 𝑁) · (𝑁 /L 𝐴)) · ((𝐵 /L 𝑁) · (𝑁 /L 𝐵))) = ((-1↑(((𝐴 − 1) / 2) · ((𝑁 − 1) / 2))) · (-1↑(((𝐵 − 1) / 2) · ((𝑁 − 1) / 2)))))
14371, 107zmulcld 9583 . . . 4 (𝜑 → (((𝐴 − 1) / 2) · ((𝑁 − 1) / 2)) ∈ ℤ)
14484, 107zmulcld 9583 . . . 4 (𝜑 → (((𝐵 − 1) / 2) · ((𝑁 − 1) / 2)) ∈ ℤ)
145 expaddzap 10813 . . . 4 (((-1 ∈ ℂ ∧ -1 # 0) ∧ ((((𝐴 − 1) / 2) · ((𝑁 − 1) / 2)) ∈ ℤ ∧ (((𝐵 − 1) / 2) · ((𝑁 − 1) / 2)) ∈ ℤ)) → (-1↑((((𝐴 − 1) / 2) · ((𝑁 − 1) / 2)) + (((𝐵 − 1) / 2) · ((𝑁 − 1) / 2)))) = ((-1↑(((𝐴 − 1) / 2) · ((𝑁 − 1) / 2))) · (-1↑(((𝐵 − 1) / 2) · ((𝑁 − 1) / 2)))))
146116, 118, 143, 144, 145syl22anc 1272 . . 3 (𝜑 → (-1↑((((𝐴 − 1) / 2) · ((𝑁 − 1) / 2)) + (((𝐵 − 1) / 2) · ((𝑁 − 1) / 2)))) = ((-1↑(((𝐴 − 1) / 2) · ((𝑁 − 1) / 2))) · (-1↑(((𝐵 − 1) / 2) · ((𝑁 − 1) / 2)))))
147142, 146eqtr4d 2265 . 2 (𝜑 → (((𝐴 /L 𝑁) · (𝑁 /L 𝐴)) · ((𝐵 /L 𝑁) · (𝑁 /L 𝐵))) = (-1↑((((𝐴 − 1) / 2) · ((𝑁 − 1) / 2)) + (((𝐵 − 1) / 2) · ((𝑁 − 1) / 2)))))
148 lgscl 15701 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℤ)
1493, 99, 148syl2anc 411 . . . . 5 (𝜑 → (𝐴 /L 𝑁) ∈ ℤ)
150149zcnd 9578 . . . 4 (𝜑 → (𝐴 /L 𝑁) ∈ ℂ)
151 lgscl 15701 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐵 /L 𝑁) ∈ ℤ)
1529, 99, 151syl2anc 411 . . . . 5 (𝜑 → (𝐵 /L 𝑁) ∈ ℤ)
153152zcnd 9578 . . . 4 (𝜑 → (𝐵 /L 𝑁) ∈ ℂ)
154 lgscl 15701 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑁 /L 𝐴) ∈ ℤ)
15599, 3, 154syl2anc 411 . . . . 5 (𝜑 → (𝑁 /L 𝐴) ∈ ℤ)
156155zcnd 9578 . . . 4 (𝜑 → (𝑁 /L 𝐴) ∈ ℂ)
157 lgscl 15701 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑁 /L 𝐵) ∈ ℤ)
15899, 9, 157syl2anc 411 . . . . 5 (𝜑 → (𝑁 /L 𝐵) ∈ ℤ)
159158zcnd 9578 . . . 4 (𝜑 → (𝑁 /L 𝐵) ∈ ℂ)
160150, 153, 156, 159mul4d 8309 . . 3 (𝜑 → (((𝐴 /L 𝑁) · (𝐵 /L 𝑁)) · ((𝑁 /L 𝐴) · (𝑁 /L 𝐵))) = (((𝐴 /L 𝑁) · (𝑁 /L 𝐴)) · ((𝐵 /L 𝑁) · (𝑁 /L 𝐵))))
1612nnne0d 9163 . . . . . 6 (𝜑𝐴 ≠ 0)
1628nnne0d 9163 . . . . . 6 (𝜑𝐵 ≠ 0)
163 lgsdir 15722 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
1643, 9, 99, 161, 162, 163syl32anc 1279 . . . . 5 (𝜑 → ((𝐴 · 𝐵) /L 𝑁) = ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)))
1651oveq1d 6022 . . . . 5 (𝜑 → ((𝐴 · 𝐵) /L 𝑁) = (𝑀 /L 𝑁))
166164, 165eqtr3d 2264 . . . 4 (𝜑 → ((𝐴 /L 𝑁) · (𝐵 /L 𝑁)) = (𝑀 /L 𝑁))
167 lgsdi 15724 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝑁 /L (𝐴 · 𝐵)) = ((𝑁 /L 𝐴) · (𝑁 /L 𝐵)))
16899, 3, 9, 161, 162, 167syl32anc 1279 . . . . 5 (𝜑 → (𝑁 /L (𝐴 · 𝐵)) = ((𝑁 /L 𝐴) · (𝑁 /L 𝐵)))
1691oveq2d 6023 . . . . 5 (𝜑 → (𝑁 /L (𝐴 · 𝐵)) = (𝑁 /L 𝑀))
170168, 169eqtr3d 2264 . . . 4 (𝜑 → ((𝑁 /L 𝐴) · (𝑁 /L 𝐵)) = (𝑁 /L 𝑀))
171166, 170oveq12d 6025 . . 3 (𝜑 → (((𝐴 /L 𝑁) · (𝐵 /L 𝑁)) · ((𝑁 /L 𝐴) · (𝑁 /L 𝐵))) = ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)))
172160, 171eqtr3d 2264 . 2 (𝜑 → (((𝐴 /L 𝑁) · (𝑁 /L 𝐴)) · ((𝐵 /L 𝑁) · (𝑁 /L 𝐵))) = ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)))
173139, 147, 1723eqtr2rd 2269 1 (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wne 2400   class class class wbr 4083  (class class class)co 6007  cc 8005  0cc0 8007  1c1 8008   + caddc 8010   · cmul 8012  cmin 8325  -cneg 8326   # cap 8736   / cdiv 8827  cn 9118  2c2 9169  cz 9454  cexp 10768  cdvds 12306   gcd cgcd 12482  cprime 12637   /L clgs 15684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-xor 1418  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-2o 6569  df-oadd 6572  df-er 6688  df-en 6896  df-dom 6897  df-fin 6898  df-sup 7159  df-inf 7160  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-fl 10498  df-mod 10553  df-seqfrec 10678  df-exp 10769  df-ihash 11006  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-proddc 12070  df-dvds 12307  df-gcd 12483  df-prm 12638  df-phi 12741  df-pc 12816  df-lgs 15685
This theorem is referenced by:  lgsquad2lem2  15769
  Copyright terms: Public domain W3C validator