ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wilthlem1 GIF version

Theorem wilthlem1 15639
Description: The only elements that are equal to their own inverses in the multiplicative group of nonzero elements in ℤ / 𝑃 are 1 and -1≡𝑃 − 1. (Note that from prmdiveq 12744, (𝑁↑(𝑃 − 2)) mod 𝑃 is the modular inverse of 𝑁 in ℤ / 𝑃. (Contributed by Mario Carneiro, 24-Jan-2015.)
Assertion
Ref Expression
wilthlem1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 = ((𝑁↑(𝑃 − 2)) mod 𝑃) ↔ (𝑁 = 1 ∨ 𝑁 = (𝑃 − 1))))

Proof of Theorem wilthlem1
StepHypRef Expression
1 elfzelz 10209 . . . . . . . . . 10 (𝑁 ∈ (1...(𝑃 − 1)) → 𝑁 ∈ ℤ)
21adantl 277 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℤ)
3 peano2zm 9472 . . . . . . . . 9 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
42, 3syl 14 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 − 1) ∈ ℤ)
54zcnd 9558 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 − 1) ∈ ℂ)
62peano2zd 9560 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 + 1) ∈ ℤ)
76zcnd 9558 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 + 1) ∈ ℂ)
85, 7mulcomd 8156 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁 − 1) · (𝑁 + 1)) = ((𝑁 + 1) · (𝑁 − 1)))
92zcnd 9558 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℂ)
10 ax-1cn 8080 . . . . . . 7 1 ∈ ℂ
11 subsq 10855 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁↑2) − (1↑2)) = ((𝑁 + 1) · (𝑁 − 1)))
129, 10, 11sylancl 413 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁↑2) − (1↑2)) = ((𝑁 + 1) · (𝑁 − 1)))
139sqvald 10879 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁↑2) = (𝑁 · 𝑁))
14 sq1 10842 . . . . . . . 8 (1↑2) = 1
1514a1i 9 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (1↑2) = 1)
1613, 15oveq12d 6012 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁↑2) − (1↑2)) = ((𝑁 · 𝑁) − 1))
178, 12, 163eqtr2d 2268 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁 − 1) · (𝑁 + 1)) = ((𝑁 · 𝑁) − 1))
1817breq2d 4094 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 ∥ ((𝑁 − 1) · (𝑁 + 1)) ↔ 𝑃 ∥ ((𝑁 · 𝑁) − 1)))
19 fz1ssfz0 10301 . . . . . 6 (1...(𝑃 − 1)) ⊆ (0...(𝑃 − 1))
20 simpr 110 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ (1...(𝑃 − 1)))
2119, 20sselid 3222 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ (0...(𝑃 − 1)))
2221biantrurd 305 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 ∥ ((𝑁 · 𝑁) − 1) ↔ (𝑁 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑁 · 𝑁) − 1))))
2318, 22bitrd 188 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 ∥ ((𝑁 − 1) · (𝑁 + 1)) ↔ (𝑁 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑁 · 𝑁) − 1))))
24 simpl 109 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℙ)
25 euclemma 12654 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑁 − 1) ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝑃 ∥ ((𝑁 − 1) · (𝑁 + 1)) ↔ (𝑃 ∥ (𝑁 − 1) ∨ 𝑃 ∥ (𝑁 + 1))))
2624, 4, 6, 25syl3anc 1271 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 ∥ ((𝑁 − 1) · (𝑁 + 1)) ↔ (𝑃 ∥ (𝑁 − 1) ∨ 𝑃 ∥ (𝑁 + 1))))
27 prmnn 12618 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
28 fzm1ndvds 12353 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ¬ 𝑃𝑁)
2927, 28sylan 283 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ¬ 𝑃𝑁)
30 eqid 2229 . . . . 5 ((𝑁↑(𝑃 − 2)) mod 𝑃) = ((𝑁↑(𝑃 − 2)) mod 𝑃)
3130prmdiveq 12744 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) → ((𝑁 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑁 · 𝑁) − 1)) ↔ 𝑁 = ((𝑁↑(𝑃 − 2)) mod 𝑃)))
3224, 2, 29, 31syl3anc 1271 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑁 · 𝑁) − 1)) ↔ 𝑁 = ((𝑁↑(𝑃 − 2)) mod 𝑃)))
3323, 26, 323bitr3rd 219 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 = ((𝑁↑(𝑃 − 2)) mod 𝑃) ↔ (𝑃 ∥ (𝑁 − 1) ∨ 𝑃 ∥ (𝑁 + 1))))
3427adantr 276 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℕ)
35 1zzd 9461 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 1 ∈ ℤ)
36 moddvds 12296 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → ((𝑁 mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ (𝑁 − 1)))
3734, 2, 35, 36syl3anc 1271 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁 mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ (𝑁 − 1)))
38 zq 9809 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
391, 38syl 14 . . . . . . 7 (𝑁 ∈ (1...(𝑃 − 1)) → 𝑁 ∈ ℚ)
4039adantl 277 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℚ)
41 prmz 12619 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
42 zq 9809 . . . . . . . 8 (𝑃 ∈ ℤ → 𝑃 ∈ ℚ)
4341, 42syl 14 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℚ)
4443adantr 276 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℚ)
45 elfznn 10238 . . . . . . . . 9 (𝑁 ∈ (1...(𝑃 − 1)) → 𝑁 ∈ ℕ)
4645adantl 277 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℕ)
4746nnnn0d 9410 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℕ0)
4847nn0ge0d 9413 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 0 ≤ 𝑁)
49 elfzle2 10212 . . . . . . . 8 (𝑁 ∈ (1...(𝑃 − 1)) → 𝑁 ≤ (𝑃 − 1))
5049adantl 277 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ≤ (𝑃 − 1))
51 zltlem1 9492 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 < 𝑃𝑁 ≤ (𝑃 − 1)))
521, 41, 51syl2anr 290 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 < 𝑃𝑁 ≤ (𝑃 − 1)))
5350, 52mpbird 167 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 < 𝑃)
54 modqid 10558 . . . . . 6 (((𝑁 ∈ ℚ ∧ 𝑃 ∈ ℚ) ∧ (0 ≤ 𝑁𝑁 < 𝑃)) → (𝑁 mod 𝑃) = 𝑁)
5540, 44, 48, 53, 54syl22anc 1272 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 mod 𝑃) = 𝑁)
56 prmuz2 12639 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
5756adantr 276 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ (ℤ‘2))
58 eluz2gt1 9785 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
5957, 58syl 14 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 1 < 𝑃)
60 q1mod 10565 . . . . . 6 ((𝑃 ∈ ℚ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
6144, 59, 60syl2anc 411 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (1 mod 𝑃) = 1)
6255, 61eqeq12d 2244 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁 mod 𝑃) = (1 mod 𝑃) ↔ 𝑁 = 1))
6337, 62bitr3d 190 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 ∥ (𝑁 − 1) ↔ 𝑁 = 1))
6435znegcld 9559 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → -1 ∈ ℤ)
65 moddvds 12296 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ -1 ∈ ℤ) → ((𝑁 mod 𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ (𝑁 − -1)))
6634, 2, 64, 65syl3anc 1271 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁 mod 𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ (𝑁 − -1)))
6734nncnd 9112 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℂ)
6867mullidd 8152 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (1 · 𝑃) = 𝑃)
6968oveq2d 6010 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (-1 + (1 · 𝑃)) = (-1 + 𝑃))
70 neg1cn 9203 . . . . . . . . 9 -1 ∈ ℂ
71 addcom 8271 . . . . . . . . 9 ((-1 ∈ ℂ ∧ 𝑃 ∈ ℂ) → (-1 + 𝑃) = (𝑃 + -1))
7270, 67, 71sylancr 414 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (-1 + 𝑃) = (𝑃 + -1))
73 negsub 8382 . . . . . . . . 9 ((𝑃 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑃 + -1) = (𝑃 − 1))
7467, 10, 73sylancl 413 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 + -1) = (𝑃 − 1))
7569, 72, 743eqtrd 2266 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (-1 + (1 · 𝑃)) = (𝑃 − 1))
7675oveq1d 6009 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((-1 + (1 · 𝑃)) mod 𝑃) = ((𝑃 − 1) mod 𝑃))
77 neg1z 9466 . . . . . . . 8 -1 ∈ ℤ
78 zq 9809 . . . . . . . 8 (-1 ∈ ℤ → -1 ∈ ℚ)
7977, 78mp1i 10 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → -1 ∈ ℚ)
8034nngt0d 9142 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 0 < 𝑃)
81 modqcyc 10568 . . . . . . 7 (((-1 ∈ ℚ ∧ 1 ∈ ℤ) ∧ (𝑃 ∈ ℚ ∧ 0 < 𝑃)) → ((-1 + (1 · 𝑃)) mod 𝑃) = (-1 mod 𝑃))
8279, 35, 44, 80, 81syl22anc 1272 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((-1 + (1 · 𝑃)) mod 𝑃) = (-1 mod 𝑃))
83 nnm1nn0 9398 . . . . . . . . . 10 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
8434, 83syl 14 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 − 1) ∈ ℕ0)
8584nn0zd 9555 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 − 1) ∈ ℤ)
86 zq 9809 . . . . . . . 8 ((𝑃 − 1) ∈ ℤ → (𝑃 − 1) ∈ ℚ)
8785, 86syl 14 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 − 1) ∈ ℚ)
8884nn0ge0d 9413 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 0 ≤ (𝑃 − 1))
8934nnred 9111 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℝ)
9089ltm1d 9067 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 − 1) < 𝑃)
91 modqid 10558 . . . . . . 7 ((((𝑃 − 1) ∈ ℚ ∧ 𝑃 ∈ ℚ) ∧ (0 ≤ (𝑃 − 1) ∧ (𝑃 − 1) < 𝑃)) → ((𝑃 − 1) mod 𝑃) = (𝑃 − 1))
9287, 44, 88, 90, 91syl22anc 1272 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑃 − 1) mod 𝑃) = (𝑃 − 1))
9376, 82, 923eqtr3d 2270 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (-1 mod 𝑃) = (𝑃 − 1))
9455, 93eqeq12d 2244 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁 mod 𝑃) = (-1 mod 𝑃) ↔ 𝑁 = (𝑃 − 1)))
95 subneg 8383 . . . . . 6 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 − -1) = (𝑁 + 1))
969, 10, 95sylancl 413 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 − -1) = (𝑁 + 1))
9796breq2d 4094 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 ∥ (𝑁 − -1) ↔ 𝑃 ∥ (𝑁 + 1)))
9866, 94, 973bitr3rd 219 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 ∥ (𝑁 + 1) ↔ 𝑁 = (𝑃 − 1)))
9963, 98orbi12d 798 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑃 ∥ (𝑁 − 1) ∨ 𝑃 ∥ (𝑁 + 1)) ↔ (𝑁 = 1 ∨ 𝑁 = (𝑃 − 1))))
10033, 99bitrd 188 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 = ((𝑁↑(𝑃 − 2)) mod 𝑃) ↔ (𝑁 = 1 ∨ 𝑁 = (𝑃 − 1))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wcel 2200   class class class wbr 4082  cfv 5314  (class class class)co 5994  cc 7985  0cc0 7987  1c1 7988   + caddc 7990   · cmul 7992   < clt 8169  cle 8170  cmin 8305  -cneg 8306  cn 9098  2c2 9149  0cn0 9357  cz 9434  cuz 9710  cq 9802  ...cfz 10192   mod cmo 10531  cexp 10747  cdvds 12284  cprime 12615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-isom 5323  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-frec 6527  df-1o 6552  df-2o 6553  df-oadd 6556  df-er 6670  df-en 6878  df-dom 6879  df-fin 6880  df-sup 7139  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-fz 10193  df-fzo 10327  df-fl 10477  df-mod 10532  df-seqfrec 10657  df-exp 10748  df-ihash 10985  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-clim 11776  df-proddc 12048  df-dvds 12285  df-gcd 12461  df-prm 12616  df-phi 12719
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator