Proof of Theorem wilthlem1
Step | Hyp | Ref
| Expression |
1 | | elfzelz 10057 |
. . . . . . . . . 10
⊢ (𝑁 ∈ (1...(𝑃 − 1)) → 𝑁 ∈ ℤ) |
2 | 1 | adantl 277 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℤ) |
3 | | peano2zm 9322 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈
ℤ) |
4 | 2, 3 | syl 14 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 − 1) ∈ ℤ) |
5 | 4 | zcnd 9407 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 − 1) ∈ ℂ) |
6 | 2 | peano2zd 9409 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 + 1) ∈ ℤ) |
7 | 6 | zcnd 9407 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 + 1) ∈ ℂ) |
8 | 5, 7 | mulcomd 8010 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁 − 1) · (𝑁 + 1)) = ((𝑁 + 1) · (𝑁 − 1))) |
9 | 2 | zcnd 9407 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℂ) |
10 | | ax-1cn 7935 |
. . . . . . 7
⊢ 1 ∈
ℂ |
11 | | subsq 10661 |
. . . . . . 7
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁↑2)
− (1↑2)) = ((𝑁 +
1) · (𝑁 −
1))) |
12 | 9, 10, 11 | sylancl 413 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁↑2) − (1↑2)) = ((𝑁 + 1) · (𝑁 − 1))) |
13 | 9 | sqvald 10685 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁↑2) = (𝑁 · 𝑁)) |
14 | | sq1 10648 |
. . . . . . . 8
⊢
(1↑2) = 1 |
15 | 14 | a1i 9 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (1↑2) =
1) |
16 | 13, 15 | oveq12d 5915 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁↑2) − (1↑2)) = ((𝑁 · 𝑁) − 1)) |
17 | 8, 12, 16 | 3eqtr2d 2228 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁 − 1) · (𝑁 + 1)) = ((𝑁 · 𝑁) − 1)) |
18 | 17 | breq2d 4030 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 ∥ ((𝑁 − 1) · (𝑁 + 1)) ↔ 𝑃 ∥ ((𝑁 · 𝑁) − 1))) |
19 | | fz1ssfz0 10149 |
. . . . . 6
⊢
(1...(𝑃 − 1))
⊆ (0...(𝑃 −
1)) |
20 | | simpr 110 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ (1...(𝑃 − 1))) |
21 | 19, 20 | sselid 3168 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ (0...(𝑃 − 1))) |
22 | 21 | biantrurd 305 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 ∥ ((𝑁 · 𝑁) − 1) ↔ (𝑁 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑁 · 𝑁) − 1)))) |
23 | 18, 22 | bitrd 188 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 ∥ ((𝑁 − 1) · (𝑁 + 1)) ↔ (𝑁 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑁 · 𝑁) − 1)))) |
24 | | simpl 109 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℙ) |
25 | | euclemma 12181 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑁 − 1) ∈ ℤ ∧
(𝑁 + 1) ∈ ℤ)
→ (𝑃 ∥ ((𝑁 − 1) · (𝑁 + 1)) ↔ (𝑃 ∥ (𝑁 − 1) ∨ 𝑃 ∥ (𝑁 + 1)))) |
26 | 24, 4, 6, 25 | syl3anc 1249 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 ∥ ((𝑁 − 1) · (𝑁 + 1)) ↔ (𝑃 ∥ (𝑁 − 1) ∨ 𝑃 ∥ (𝑁 + 1)))) |
27 | | prmnn 12145 |
. . . . 5
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
28 | | fzm1ndvds 11897 |
. . . . 5
⊢ ((𝑃 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ 𝑁) |
29 | 27, 28 | sylan 283 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ 𝑁) |
30 | | eqid 2189 |
. . . . 5
⊢ ((𝑁↑(𝑃 − 2)) mod 𝑃) = ((𝑁↑(𝑃 − 2)) mod 𝑃) |
31 | 30 | prmdiveq 12271 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬
𝑃 ∥ 𝑁) → ((𝑁 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑁 · 𝑁) − 1)) ↔ 𝑁 = ((𝑁↑(𝑃 − 2)) mod 𝑃))) |
32 | 24, 2, 29, 31 | syl3anc 1249 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑁 · 𝑁) − 1)) ↔ 𝑁 = ((𝑁↑(𝑃 − 2)) mod 𝑃))) |
33 | 23, 26, 32 | 3bitr3rd 219 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 = ((𝑁↑(𝑃 − 2)) mod 𝑃) ↔ (𝑃 ∥ (𝑁 − 1) ∨ 𝑃 ∥ (𝑁 + 1)))) |
34 | 27 | adantr 276 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℕ) |
35 | | 1zzd 9311 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 1 ∈
ℤ) |
36 | | moddvds 11841 |
. . . . 5
⊢ ((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ 1 ∈
ℤ) → ((𝑁 mod
𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ (𝑁 − 1))) |
37 | 34, 2, 35, 36 | syl3anc 1249 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁 mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ (𝑁 − 1))) |
38 | | zq 9658 |
. . . . . . . 8
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℚ) |
39 | 1, 38 | syl 14 |
. . . . . . 7
⊢ (𝑁 ∈ (1...(𝑃 − 1)) → 𝑁 ∈ ℚ) |
40 | 39 | adantl 277 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℚ) |
41 | | prmz 12146 |
. . . . . . . 8
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
42 | | zq 9658 |
. . . . . . . 8
⊢ (𝑃 ∈ ℤ → 𝑃 ∈
ℚ) |
43 | 41, 42 | syl 14 |
. . . . . . 7
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℚ) |
44 | 43 | adantr 276 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℚ) |
45 | | elfznn 10086 |
. . . . . . . . 9
⊢ (𝑁 ∈ (1...(𝑃 − 1)) → 𝑁 ∈ ℕ) |
46 | 45 | adantl 277 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℕ) |
47 | 46 | nnnn0d 9260 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈
ℕ0) |
48 | 47 | nn0ge0d 9263 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 0 ≤ 𝑁) |
49 | | elfzle2 10060 |
. . . . . . . 8
⊢ (𝑁 ∈ (1...(𝑃 − 1)) → 𝑁 ≤ (𝑃 − 1)) |
50 | 49 | adantl 277 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ≤ (𝑃 − 1)) |
51 | | zltlem1 9341 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 < 𝑃 ↔ 𝑁 ≤ (𝑃 − 1))) |
52 | 1, 41, 51 | syl2anr 290 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 < 𝑃 ↔ 𝑁 ≤ (𝑃 − 1))) |
53 | 50, 52 | mpbird 167 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 < 𝑃) |
54 | | modqid 10382 |
. . . . . 6
⊢ (((𝑁 ∈ ℚ ∧ 𝑃 ∈ ℚ) ∧ (0 ≤
𝑁 ∧ 𝑁 < 𝑃)) → (𝑁 mod 𝑃) = 𝑁) |
55 | 40, 44, 48, 53, 54 | syl22anc 1250 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 mod 𝑃) = 𝑁) |
56 | | prmuz2 12166 |
. . . . . . . 8
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
(ℤ≥‘2)) |
57 | 56 | adantr 276 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈
(ℤ≥‘2)) |
58 | | eluz2gt1 9634 |
. . . . . . 7
⊢ (𝑃 ∈
(ℤ≥‘2) → 1 < 𝑃) |
59 | 57, 58 | syl 14 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 1 < 𝑃) |
60 | | q1mod 10389 |
. . . . . 6
⊢ ((𝑃 ∈ ℚ ∧ 1 <
𝑃) → (1 mod 𝑃) = 1) |
61 | 44, 59, 60 | syl2anc 411 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (1 mod 𝑃) = 1) |
62 | 55, 61 | eqeq12d 2204 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁 mod 𝑃) = (1 mod 𝑃) ↔ 𝑁 = 1)) |
63 | 37, 62 | bitr3d 190 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 ∥ (𝑁 − 1) ↔ 𝑁 = 1)) |
64 | 35 | znegcld 9408 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → -1 ∈
ℤ) |
65 | | moddvds 11841 |
. . . . 5
⊢ ((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ -1 ∈
ℤ) → ((𝑁 mod
𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ (𝑁 − -1))) |
66 | 34, 2, 64, 65 | syl3anc 1249 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁 mod 𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ (𝑁 − -1))) |
67 | 34 | nncnd 8964 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℂ) |
68 | 67 | mullidd 8006 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (1 · 𝑃) = 𝑃) |
69 | 68 | oveq2d 5913 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (-1 + (1 · 𝑃)) = (-1 + 𝑃)) |
70 | | neg1cn 9055 |
. . . . . . . . 9
⊢ -1 ∈
ℂ |
71 | | addcom 8125 |
. . . . . . . . 9
⊢ ((-1
∈ ℂ ∧ 𝑃
∈ ℂ) → (-1 + 𝑃) = (𝑃 + -1)) |
72 | 70, 67, 71 | sylancr 414 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (-1 + 𝑃) = (𝑃 + -1)) |
73 | | negsub 8236 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑃 + -1) =
(𝑃 −
1)) |
74 | 67, 10, 73 | sylancl 413 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 + -1) = (𝑃 − 1)) |
75 | 69, 72, 74 | 3eqtrd 2226 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (-1 + (1 · 𝑃)) = (𝑃 − 1)) |
76 | 75 | oveq1d 5912 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((-1 + (1 ·
𝑃)) mod 𝑃) = ((𝑃 − 1) mod 𝑃)) |
77 | | neg1z 9316 |
. . . . . . . 8
⊢ -1 ∈
ℤ |
78 | | zq 9658 |
. . . . . . . 8
⊢ (-1
∈ ℤ → -1 ∈ ℚ) |
79 | 77, 78 | mp1i 10 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → -1 ∈
ℚ) |
80 | 34 | nngt0d 8994 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 0 < 𝑃) |
81 | | modqcyc 10392 |
. . . . . . 7
⊢ (((-1
∈ ℚ ∧ 1 ∈ ℤ) ∧ (𝑃 ∈ ℚ ∧ 0 < 𝑃)) → ((-1 + (1 ·
𝑃)) mod 𝑃) = (-1 mod 𝑃)) |
82 | 79, 35, 44, 80, 81 | syl22anc 1250 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((-1 + (1 ·
𝑃)) mod 𝑃) = (-1 mod 𝑃)) |
83 | | nnm1nn0 9248 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈
ℕ0) |
84 | 34, 83 | syl 14 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 − 1) ∈
ℕ0) |
85 | 84 | nn0zd 9404 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 − 1) ∈ ℤ) |
86 | | zq 9658 |
. . . . . . . 8
⊢ ((𝑃 − 1) ∈ ℤ
→ (𝑃 − 1) ∈
ℚ) |
87 | 85, 86 | syl 14 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 − 1) ∈ ℚ) |
88 | 84 | nn0ge0d 9263 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 0 ≤ (𝑃 − 1)) |
89 | 34 | nnred 8963 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℝ) |
90 | 89 | ltm1d 8920 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 − 1) < 𝑃) |
91 | | modqid 10382 |
. . . . . . 7
⊢ ((((𝑃 − 1) ∈ ℚ ∧
𝑃 ∈ ℚ) ∧ (0
≤ (𝑃 − 1) ∧
(𝑃 − 1) < 𝑃)) → ((𝑃 − 1) mod 𝑃) = (𝑃 − 1)) |
92 | 87, 44, 88, 90, 91 | syl22anc 1250 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑃 − 1) mod 𝑃) = (𝑃 − 1)) |
93 | 76, 82, 92 | 3eqtr3d 2230 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (-1 mod 𝑃) = (𝑃 − 1)) |
94 | 55, 93 | eqeq12d 2204 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁 mod 𝑃) = (-1 mod 𝑃) ↔ 𝑁 = (𝑃 − 1))) |
95 | | subneg 8237 |
. . . . . 6
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑁 −
-1) = (𝑁 +
1)) |
96 | 9, 10, 95 | sylancl 413 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 − -1) = (𝑁 + 1)) |
97 | 96 | breq2d 4030 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 ∥ (𝑁 − -1) ↔ 𝑃 ∥ (𝑁 + 1))) |
98 | 66, 94, 97 | 3bitr3rd 219 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 ∥ (𝑁 + 1) ↔ 𝑁 = (𝑃 − 1))) |
99 | 63, 98 | orbi12d 794 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑃 ∥ (𝑁 − 1) ∨ 𝑃 ∥ (𝑁 + 1)) ↔ (𝑁 = 1 ∨ 𝑁 = (𝑃 − 1)))) |
100 | 33, 99 | bitrd 188 |
1
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 = ((𝑁↑(𝑃 − 2)) mod 𝑃) ↔ (𝑁 = 1 ∨ 𝑁 = (𝑃 − 1)))) |