ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wilthlem1 GIF version

Theorem wilthlem1 15153
Description: The only elements that are equal to their own inverses in the multiplicative group of nonzero elements in ℤ / 𝑃 are 1 and -1≡𝑃 − 1. (Note that from prmdiveq 12377, (𝑁↑(𝑃 − 2)) mod 𝑃 is the modular inverse of 𝑁 in ℤ / 𝑃. (Contributed by Mario Carneiro, 24-Jan-2015.)
Assertion
Ref Expression
wilthlem1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 = ((𝑁↑(𝑃 − 2)) mod 𝑃) ↔ (𝑁 = 1 ∨ 𝑁 = (𝑃 − 1))))

Proof of Theorem wilthlem1
StepHypRef Expression
1 elfzelz 10094 . . . . . . . . . 10 (𝑁 ∈ (1...(𝑃 − 1)) → 𝑁 ∈ ℤ)
21adantl 277 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℤ)
3 peano2zm 9358 . . . . . . . . 9 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
42, 3syl 14 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 − 1) ∈ ℤ)
54zcnd 9443 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 − 1) ∈ ℂ)
62peano2zd 9445 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 + 1) ∈ ℤ)
76zcnd 9443 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 + 1) ∈ ℂ)
85, 7mulcomd 8043 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁 − 1) · (𝑁 + 1)) = ((𝑁 + 1) · (𝑁 − 1)))
92zcnd 9443 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℂ)
10 ax-1cn 7967 . . . . . . 7 1 ∈ ℂ
11 subsq 10720 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁↑2) − (1↑2)) = ((𝑁 + 1) · (𝑁 − 1)))
129, 10, 11sylancl 413 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁↑2) − (1↑2)) = ((𝑁 + 1) · (𝑁 − 1)))
139sqvald 10744 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁↑2) = (𝑁 · 𝑁))
14 sq1 10707 . . . . . . . 8 (1↑2) = 1
1514a1i 9 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (1↑2) = 1)
1613, 15oveq12d 5937 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁↑2) − (1↑2)) = ((𝑁 · 𝑁) − 1))
178, 12, 163eqtr2d 2232 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁 − 1) · (𝑁 + 1)) = ((𝑁 · 𝑁) − 1))
1817breq2d 4042 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 ∥ ((𝑁 − 1) · (𝑁 + 1)) ↔ 𝑃 ∥ ((𝑁 · 𝑁) − 1)))
19 fz1ssfz0 10186 . . . . . 6 (1...(𝑃 − 1)) ⊆ (0...(𝑃 − 1))
20 simpr 110 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ (1...(𝑃 − 1)))
2119, 20sselid 3178 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ (0...(𝑃 − 1)))
2221biantrurd 305 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 ∥ ((𝑁 · 𝑁) − 1) ↔ (𝑁 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑁 · 𝑁) − 1))))
2318, 22bitrd 188 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 ∥ ((𝑁 − 1) · (𝑁 + 1)) ↔ (𝑁 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑁 · 𝑁) − 1))))
24 simpl 109 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℙ)
25 euclemma 12287 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑁 − 1) ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝑃 ∥ ((𝑁 − 1) · (𝑁 + 1)) ↔ (𝑃 ∥ (𝑁 − 1) ∨ 𝑃 ∥ (𝑁 + 1))))
2624, 4, 6, 25syl3anc 1249 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 ∥ ((𝑁 − 1) · (𝑁 + 1)) ↔ (𝑃 ∥ (𝑁 − 1) ∨ 𝑃 ∥ (𝑁 + 1))))
27 prmnn 12251 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
28 fzm1ndvds 12001 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ¬ 𝑃𝑁)
2927, 28sylan 283 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ¬ 𝑃𝑁)
30 eqid 2193 . . . . 5 ((𝑁↑(𝑃 − 2)) mod 𝑃) = ((𝑁↑(𝑃 − 2)) mod 𝑃)
3130prmdiveq 12377 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) → ((𝑁 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑁 · 𝑁) − 1)) ↔ 𝑁 = ((𝑁↑(𝑃 − 2)) mod 𝑃)))
3224, 2, 29, 31syl3anc 1249 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑁 · 𝑁) − 1)) ↔ 𝑁 = ((𝑁↑(𝑃 − 2)) mod 𝑃)))
3323, 26, 323bitr3rd 219 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 = ((𝑁↑(𝑃 − 2)) mod 𝑃) ↔ (𝑃 ∥ (𝑁 − 1) ∨ 𝑃 ∥ (𝑁 + 1))))
3427adantr 276 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℕ)
35 1zzd 9347 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 1 ∈ ℤ)
36 moddvds 11945 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → ((𝑁 mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ (𝑁 − 1)))
3734, 2, 35, 36syl3anc 1249 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁 mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ (𝑁 − 1)))
38 zq 9694 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
391, 38syl 14 . . . . . . 7 (𝑁 ∈ (1...(𝑃 − 1)) → 𝑁 ∈ ℚ)
4039adantl 277 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℚ)
41 prmz 12252 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
42 zq 9694 . . . . . . . 8 (𝑃 ∈ ℤ → 𝑃 ∈ ℚ)
4341, 42syl 14 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℚ)
4443adantr 276 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℚ)
45 elfznn 10123 . . . . . . . . 9 (𝑁 ∈ (1...(𝑃 − 1)) → 𝑁 ∈ ℕ)
4645adantl 277 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℕ)
4746nnnn0d 9296 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℕ0)
4847nn0ge0d 9299 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 0 ≤ 𝑁)
49 elfzle2 10097 . . . . . . . 8 (𝑁 ∈ (1...(𝑃 − 1)) → 𝑁 ≤ (𝑃 − 1))
5049adantl 277 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ≤ (𝑃 − 1))
51 zltlem1 9377 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 < 𝑃𝑁 ≤ (𝑃 − 1)))
521, 41, 51syl2anr 290 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 < 𝑃𝑁 ≤ (𝑃 − 1)))
5350, 52mpbird 167 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 < 𝑃)
54 modqid 10423 . . . . . 6 (((𝑁 ∈ ℚ ∧ 𝑃 ∈ ℚ) ∧ (0 ≤ 𝑁𝑁 < 𝑃)) → (𝑁 mod 𝑃) = 𝑁)
5540, 44, 48, 53, 54syl22anc 1250 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 mod 𝑃) = 𝑁)
56 prmuz2 12272 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
5756adantr 276 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ (ℤ‘2))
58 eluz2gt1 9670 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
5957, 58syl 14 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 1 < 𝑃)
60 q1mod 10430 . . . . . 6 ((𝑃 ∈ ℚ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
6144, 59, 60syl2anc 411 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (1 mod 𝑃) = 1)
6255, 61eqeq12d 2208 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁 mod 𝑃) = (1 mod 𝑃) ↔ 𝑁 = 1))
6337, 62bitr3d 190 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 ∥ (𝑁 − 1) ↔ 𝑁 = 1))
6435znegcld 9444 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → -1 ∈ ℤ)
65 moddvds 11945 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ -1 ∈ ℤ) → ((𝑁 mod 𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ (𝑁 − -1)))
6634, 2, 64, 65syl3anc 1249 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁 mod 𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ (𝑁 − -1)))
6734nncnd 8998 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℂ)
6867mullidd 8039 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (1 · 𝑃) = 𝑃)
6968oveq2d 5935 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (-1 + (1 · 𝑃)) = (-1 + 𝑃))
70 neg1cn 9089 . . . . . . . . 9 -1 ∈ ℂ
71 addcom 8158 . . . . . . . . 9 ((-1 ∈ ℂ ∧ 𝑃 ∈ ℂ) → (-1 + 𝑃) = (𝑃 + -1))
7270, 67, 71sylancr 414 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (-1 + 𝑃) = (𝑃 + -1))
73 negsub 8269 . . . . . . . . 9 ((𝑃 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑃 + -1) = (𝑃 − 1))
7467, 10, 73sylancl 413 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 + -1) = (𝑃 − 1))
7569, 72, 743eqtrd 2230 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (-1 + (1 · 𝑃)) = (𝑃 − 1))
7675oveq1d 5934 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((-1 + (1 · 𝑃)) mod 𝑃) = ((𝑃 − 1) mod 𝑃))
77 neg1z 9352 . . . . . . . 8 -1 ∈ ℤ
78 zq 9694 . . . . . . . 8 (-1 ∈ ℤ → -1 ∈ ℚ)
7977, 78mp1i 10 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → -1 ∈ ℚ)
8034nngt0d 9028 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 0 < 𝑃)
81 modqcyc 10433 . . . . . . 7 (((-1 ∈ ℚ ∧ 1 ∈ ℤ) ∧ (𝑃 ∈ ℚ ∧ 0 < 𝑃)) → ((-1 + (1 · 𝑃)) mod 𝑃) = (-1 mod 𝑃))
8279, 35, 44, 80, 81syl22anc 1250 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((-1 + (1 · 𝑃)) mod 𝑃) = (-1 mod 𝑃))
83 nnm1nn0 9284 . . . . . . . . . 10 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
8434, 83syl 14 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 − 1) ∈ ℕ0)
8584nn0zd 9440 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 − 1) ∈ ℤ)
86 zq 9694 . . . . . . . 8 ((𝑃 − 1) ∈ ℤ → (𝑃 − 1) ∈ ℚ)
8785, 86syl 14 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 − 1) ∈ ℚ)
8884nn0ge0d 9299 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 0 ≤ (𝑃 − 1))
8934nnred 8997 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℝ)
9089ltm1d 8953 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 − 1) < 𝑃)
91 modqid 10423 . . . . . . 7 ((((𝑃 − 1) ∈ ℚ ∧ 𝑃 ∈ ℚ) ∧ (0 ≤ (𝑃 − 1) ∧ (𝑃 − 1) < 𝑃)) → ((𝑃 − 1) mod 𝑃) = (𝑃 − 1))
9287, 44, 88, 90, 91syl22anc 1250 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑃 − 1) mod 𝑃) = (𝑃 − 1))
9376, 82, 923eqtr3d 2234 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (-1 mod 𝑃) = (𝑃 − 1))
9455, 93eqeq12d 2208 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁 mod 𝑃) = (-1 mod 𝑃) ↔ 𝑁 = (𝑃 − 1)))
95 subneg 8270 . . . . . 6 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 − -1) = (𝑁 + 1))
969, 10, 95sylancl 413 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 − -1) = (𝑁 + 1))
9796breq2d 4042 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 ∥ (𝑁 − -1) ↔ 𝑃 ∥ (𝑁 + 1)))
9866, 94, 973bitr3rd 219 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 ∥ (𝑁 + 1) ↔ 𝑁 = (𝑃 − 1)))
9963, 98orbi12d 794 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑃 ∥ (𝑁 − 1) ∨ 𝑃 ∥ (𝑁 + 1)) ↔ (𝑁 = 1 ∨ 𝑁 = (𝑃 − 1))))
10033, 99bitrd 188 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 = ((𝑁↑(𝑃 − 2)) mod 𝑃) ↔ (𝑁 = 1 ∨ 𝑁 = (𝑃 − 1))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2164   class class class wbr 4030  cfv 5255  (class class class)co 5919  cc 7872  0cc0 7874  1c1 7875   + caddc 7877   · cmul 7879   < clt 8056  cle 8057  cmin 8192  -cneg 8193  cn 8984  2c2 9035  0cn0 9243  cz 9320  cuz 9595  cq 9687  ...cfz 10077   mod cmo 10396  cexp 10612  cdvds 11933  cprime 12248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-2o 6472  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-sup 7045  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-fl 10342  df-mod 10397  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-proddc 11697  df-dvds 11934  df-gcd 12083  df-prm 12249  df-phi 12352
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator