ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wilthlem1 GIF version

Theorem wilthlem1 15112
Description: The only elements that are equal to their own inverses in the multiplicative group of nonzero elements in ℤ / 𝑃 are 1 and -1≡𝑃 − 1. (Note that from prmdiveq 12374, (𝑁↑(𝑃 − 2)) mod 𝑃 is the modular inverse of 𝑁 in ℤ / 𝑃. (Contributed by Mario Carneiro, 24-Jan-2015.)
Assertion
Ref Expression
wilthlem1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 = ((𝑁↑(𝑃 − 2)) mod 𝑃) ↔ (𝑁 = 1 ∨ 𝑁 = (𝑃 − 1))))

Proof of Theorem wilthlem1
StepHypRef Expression
1 elfzelz 10091 . . . . . . . . . 10 (𝑁 ∈ (1...(𝑃 − 1)) → 𝑁 ∈ ℤ)
21adantl 277 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℤ)
3 peano2zm 9355 . . . . . . . . 9 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
42, 3syl 14 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 − 1) ∈ ℤ)
54zcnd 9440 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 − 1) ∈ ℂ)
62peano2zd 9442 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 + 1) ∈ ℤ)
76zcnd 9440 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 + 1) ∈ ℂ)
85, 7mulcomd 8041 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁 − 1) · (𝑁 + 1)) = ((𝑁 + 1) · (𝑁 − 1)))
92zcnd 9440 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℂ)
10 ax-1cn 7965 . . . . . . 7 1 ∈ ℂ
11 subsq 10717 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁↑2) − (1↑2)) = ((𝑁 + 1) · (𝑁 − 1)))
129, 10, 11sylancl 413 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁↑2) − (1↑2)) = ((𝑁 + 1) · (𝑁 − 1)))
139sqvald 10741 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁↑2) = (𝑁 · 𝑁))
14 sq1 10704 . . . . . . . 8 (1↑2) = 1
1514a1i 9 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (1↑2) = 1)
1613, 15oveq12d 5936 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁↑2) − (1↑2)) = ((𝑁 · 𝑁) − 1))
178, 12, 163eqtr2d 2232 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁 − 1) · (𝑁 + 1)) = ((𝑁 · 𝑁) − 1))
1817breq2d 4041 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 ∥ ((𝑁 − 1) · (𝑁 + 1)) ↔ 𝑃 ∥ ((𝑁 · 𝑁) − 1)))
19 fz1ssfz0 10183 . . . . . 6 (1...(𝑃 − 1)) ⊆ (0...(𝑃 − 1))
20 simpr 110 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ (1...(𝑃 − 1)))
2119, 20sselid 3177 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ (0...(𝑃 − 1)))
2221biantrurd 305 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 ∥ ((𝑁 · 𝑁) − 1) ↔ (𝑁 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑁 · 𝑁) − 1))))
2318, 22bitrd 188 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 ∥ ((𝑁 − 1) · (𝑁 + 1)) ↔ (𝑁 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑁 · 𝑁) − 1))))
24 simpl 109 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℙ)
25 euclemma 12284 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑁 − 1) ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝑃 ∥ ((𝑁 − 1) · (𝑁 + 1)) ↔ (𝑃 ∥ (𝑁 − 1) ∨ 𝑃 ∥ (𝑁 + 1))))
2624, 4, 6, 25syl3anc 1249 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 ∥ ((𝑁 − 1) · (𝑁 + 1)) ↔ (𝑃 ∥ (𝑁 − 1) ∨ 𝑃 ∥ (𝑁 + 1))))
27 prmnn 12248 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
28 fzm1ndvds 11998 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ¬ 𝑃𝑁)
2927, 28sylan 283 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ¬ 𝑃𝑁)
30 eqid 2193 . . . . 5 ((𝑁↑(𝑃 − 2)) mod 𝑃) = ((𝑁↑(𝑃 − 2)) mod 𝑃)
3130prmdiveq 12374 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ ¬ 𝑃𝑁) → ((𝑁 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑁 · 𝑁) − 1)) ↔ 𝑁 = ((𝑁↑(𝑃 − 2)) mod 𝑃)))
3224, 2, 29, 31syl3anc 1249 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑁 · 𝑁) − 1)) ↔ 𝑁 = ((𝑁↑(𝑃 − 2)) mod 𝑃)))
3323, 26, 323bitr3rd 219 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 = ((𝑁↑(𝑃 − 2)) mod 𝑃) ↔ (𝑃 ∥ (𝑁 − 1) ∨ 𝑃 ∥ (𝑁 + 1))))
3427adantr 276 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℕ)
35 1zzd 9344 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 1 ∈ ℤ)
36 moddvds 11942 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → ((𝑁 mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ (𝑁 − 1)))
3734, 2, 35, 36syl3anc 1249 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁 mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ (𝑁 − 1)))
38 zq 9691 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
391, 38syl 14 . . . . . . 7 (𝑁 ∈ (1...(𝑃 − 1)) → 𝑁 ∈ ℚ)
4039adantl 277 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℚ)
41 prmz 12249 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
42 zq 9691 . . . . . . . 8 (𝑃 ∈ ℤ → 𝑃 ∈ ℚ)
4341, 42syl 14 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℚ)
4443adantr 276 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℚ)
45 elfznn 10120 . . . . . . . . 9 (𝑁 ∈ (1...(𝑃 − 1)) → 𝑁 ∈ ℕ)
4645adantl 277 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℕ)
4746nnnn0d 9293 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ∈ ℕ0)
4847nn0ge0d 9296 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 0 ≤ 𝑁)
49 elfzle2 10094 . . . . . . . 8 (𝑁 ∈ (1...(𝑃 − 1)) → 𝑁 ≤ (𝑃 − 1))
5049adantl 277 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 ≤ (𝑃 − 1))
51 zltlem1 9374 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 < 𝑃𝑁 ≤ (𝑃 − 1)))
521, 41, 51syl2anr 290 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 < 𝑃𝑁 ≤ (𝑃 − 1)))
5350, 52mpbird 167 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑁 < 𝑃)
54 modqid 10420 . . . . . 6 (((𝑁 ∈ ℚ ∧ 𝑃 ∈ ℚ) ∧ (0 ≤ 𝑁𝑁 < 𝑃)) → (𝑁 mod 𝑃) = 𝑁)
5540, 44, 48, 53, 54syl22anc 1250 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 mod 𝑃) = 𝑁)
56 prmuz2 12269 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
5756adantr 276 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ (ℤ‘2))
58 eluz2gt1 9667 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
5957, 58syl 14 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 1 < 𝑃)
60 q1mod 10427 . . . . . 6 ((𝑃 ∈ ℚ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
6144, 59, 60syl2anc 411 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (1 mod 𝑃) = 1)
6255, 61eqeq12d 2208 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁 mod 𝑃) = (1 mod 𝑃) ↔ 𝑁 = 1))
6337, 62bitr3d 190 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 ∥ (𝑁 − 1) ↔ 𝑁 = 1))
6435znegcld 9441 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → -1 ∈ ℤ)
65 moddvds 11942 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ -1 ∈ ℤ) → ((𝑁 mod 𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ (𝑁 − -1)))
6634, 2, 64, 65syl3anc 1249 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁 mod 𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ (𝑁 − -1)))
6734nncnd 8996 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℂ)
6867mullidd 8037 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (1 · 𝑃) = 𝑃)
6968oveq2d 5934 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (-1 + (1 · 𝑃)) = (-1 + 𝑃))
70 neg1cn 9087 . . . . . . . . 9 -1 ∈ ℂ
71 addcom 8156 . . . . . . . . 9 ((-1 ∈ ℂ ∧ 𝑃 ∈ ℂ) → (-1 + 𝑃) = (𝑃 + -1))
7270, 67, 71sylancr 414 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (-1 + 𝑃) = (𝑃 + -1))
73 negsub 8267 . . . . . . . . 9 ((𝑃 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑃 + -1) = (𝑃 − 1))
7467, 10, 73sylancl 413 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 + -1) = (𝑃 − 1))
7569, 72, 743eqtrd 2230 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (-1 + (1 · 𝑃)) = (𝑃 − 1))
7675oveq1d 5933 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((-1 + (1 · 𝑃)) mod 𝑃) = ((𝑃 − 1) mod 𝑃))
77 neg1z 9349 . . . . . . . 8 -1 ∈ ℤ
78 zq 9691 . . . . . . . 8 (-1 ∈ ℤ → -1 ∈ ℚ)
7977, 78mp1i 10 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → -1 ∈ ℚ)
8034nngt0d 9026 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 0 < 𝑃)
81 modqcyc 10430 . . . . . . 7 (((-1 ∈ ℚ ∧ 1 ∈ ℤ) ∧ (𝑃 ∈ ℚ ∧ 0 < 𝑃)) → ((-1 + (1 · 𝑃)) mod 𝑃) = (-1 mod 𝑃))
8279, 35, 44, 80, 81syl22anc 1250 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((-1 + (1 · 𝑃)) mod 𝑃) = (-1 mod 𝑃))
83 nnm1nn0 9281 . . . . . . . . . 10 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
8434, 83syl 14 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 − 1) ∈ ℕ0)
8584nn0zd 9437 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 − 1) ∈ ℤ)
86 zq 9691 . . . . . . . 8 ((𝑃 − 1) ∈ ℤ → (𝑃 − 1) ∈ ℚ)
8785, 86syl 14 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 − 1) ∈ ℚ)
8884nn0ge0d 9296 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 0 ≤ (𝑃 − 1))
8934nnred 8995 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℝ)
9089ltm1d 8951 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 − 1) < 𝑃)
91 modqid 10420 . . . . . . 7 ((((𝑃 − 1) ∈ ℚ ∧ 𝑃 ∈ ℚ) ∧ (0 ≤ (𝑃 − 1) ∧ (𝑃 − 1) < 𝑃)) → ((𝑃 − 1) mod 𝑃) = (𝑃 − 1))
9287, 44, 88, 90, 91syl22anc 1250 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑃 − 1) mod 𝑃) = (𝑃 − 1))
9376, 82, 923eqtr3d 2234 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (-1 mod 𝑃) = (𝑃 − 1))
9455, 93eqeq12d 2208 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑁 mod 𝑃) = (-1 mod 𝑃) ↔ 𝑁 = (𝑃 − 1)))
95 subneg 8268 . . . . . 6 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 − -1) = (𝑁 + 1))
969, 10, 95sylancl 413 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 − -1) = (𝑁 + 1))
9796breq2d 4041 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 ∥ (𝑁 − -1) ↔ 𝑃 ∥ (𝑁 + 1)))
9866, 94, 973bitr3rd 219 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑃 ∥ (𝑁 + 1) ↔ 𝑁 = (𝑃 − 1)))
9963, 98orbi12d 794 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → ((𝑃 ∥ (𝑁 − 1) ∨ 𝑃 ∥ (𝑁 + 1)) ↔ (𝑁 = 1 ∨ 𝑁 = (𝑃 − 1))))
10033, 99bitrd 188 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 = ((𝑁↑(𝑃 − 2)) mod 𝑃) ↔ (𝑁 = 1 ∨ 𝑁 = (𝑃 − 1))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2164   class class class wbr 4029  cfv 5254  (class class class)co 5918  cc 7870  0cc0 7872  1c1 7873   + caddc 7875   · cmul 7877   < clt 8054  cle 8055  cmin 8190  -cneg 8191  cn 8982  2c2 9033  0cn0 9240  cz 9317  cuz 9592  cq 9684  ...cfz 10074   mod cmo 10393  cexp 10609  cdvds 11930  cprime 12245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-2o 6470  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-sup 7043  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-proddc 11694  df-dvds 11931  df-gcd 12080  df-prm 12246  df-phi 12349
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator