ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gausslemma2d GIF version

Theorem gausslemma2d 15418
Description: Gauss' Lemma (see also theorem 9.6 in [ApostolNT] p. 182) for integer 2: Let p be an odd prime. Let S = {2, 4, 6, ..., p - 1}. Let n denote the number of elements of S whose least positive residue modulo p is greater than p/2. Then ( 2 | p ) = (-1)^n. (Contributed by AV, 14-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
gausslemma2d.n 𝑁 = (𝐻𝑀)
Assertion
Ref Expression
gausslemma2d (𝜑 → (2 /L 𝑃) = (-1↑𝑁))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑥,𝑀
Allowed substitution hints:   𝑅(𝑥)   𝑁(𝑥)

Proof of Theorem gausslemma2d
StepHypRef Expression
1 gausslemma2d.p . . 3 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 gausslemma2d.h . . 3 𝐻 = ((𝑃 − 1) / 2)
3 gausslemma2d.r . . 3 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
4 gausslemma2d.m . . 3 𝑀 = (⌊‘(𝑃 / 4))
5 gausslemma2d.n . . 3 𝑁 = (𝐻𝑀)
61, 2, 3, 4, 5gausslemma2dlem7 15417 . 2 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1)
71gausslemma2dlem0a 15398 . . . . . . 7 (𝜑𝑃 ∈ ℕ)
8 nnq 9726 . . . . . . 7 (𝑃 ∈ ℕ → 𝑃 ∈ ℚ)
97, 8syl 14 . . . . . 6 (𝜑𝑃 ∈ ℚ)
10 eldifi 3286 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
11 prmgt1 12327 . . . . . . 7 (𝑃 ∈ ℙ → 1 < 𝑃)
121, 10, 113syl 17 . . . . . 6 (𝜑 → 1 < 𝑃)
13 q1mod 10467 . . . . . 6 ((𝑃 ∈ ℚ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
149, 12, 13syl2anc 411 . . . . 5 (𝜑 → (1 mod 𝑃) = 1)
1514eqcomd 2202 . . . 4 (𝜑 → 1 = (1 mod 𝑃))
1615eqeq2d 2208 . . 3 (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1 ↔ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)))
17 neg1z 9377 . . . . . . . . . 10 -1 ∈ ℤ
181, 4, 2, 5gausslemma2dlem0h 15405 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
19 zexpcl 10665 . . . . . . . . . 10 ((-1 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) ∈ ℤ)
2017, 18, 19sylancr 414 . . . . . . . . 9 (𝜑 → (-1↑𝑁) ∈ ℤ)
21 2nn 9171 . . . . . . . . . . . 12 2 ∈ ℕ
2221a1i 9 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℕ)
231, 2gausslemma2dlem0b 15399 . . . . . . . . . . . 12 (𝜑𝐻 ∈ ℕ)
2423nnnn0d 9321 . . . . . . . . . . 11 (𝜑𝐻 ∈ ℕ0)
2522, 24nnexpcld 10806 . . . . . . . . . 10 (𝜑 → (2↑𝐻) ∈ ℕ)
2625nnzd 9466 . . . . . . . . 9 (𝜑 → (2↑𝐻) ∈ ℤ)
2720, 26zmulcld 9473 . . . . . . . 8 (𝜑 → ((-1↑𝑁) · (2↑𝐻)) ∈ ℤ)
28 zq 9719 . . . . . . . 8 (((-1↑𝑁) · (2↑𝐻)) ∈ ℤ → ((-1↑𝑁) · (2↑𝐻)) ∈ ℚ)
2927, 28syl 14 . . . . . . 7 (𝜑 → ((-1↑𝑁) · (2↑𝐻)) ∈ ℚ)
3029adantr 276 . . . . . 6 ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → ((-1↑𝑁) · (2↑𝐻)) ∈ ℚ)
31 1z 9371 . . . . . . 7 1 ∈ ℤ
32 zq 9719 . . . . . . 7 (1 ∈ ℤ → 1 ∈ ℚ)
3331, 32mp1i 10 . . . . . 6 ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → 1 ∈ ℚ)
3420adantr 276 . . . . . 6 ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → (-1↑𝑁) ∈ ℤ)
359adantr 276 . . . . . 6 ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → 𝑃 ∈ ℚ)
367nngt0d 9053 . . . . . . 7 (𝜑 → 0 < 𝑃)
3736adantr 276 . . . . . 6 ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → 0 < 𝑃)
38 simpr 110 . . . . . 6 ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃))
3930, 33, 34, 35, 37, 38modqmul1 10488 . . . . 5 ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → ((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃))
4039ex 115 . . . 4 (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃) → ((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃)))
4120zcnd 9468 . . . . . . . . 9 (𝜑 → (-1↑𝑁) ∈ ℂ)
4225nncnd 9023 . . . . . . . . 9 (𝜑 → (2↑𝐻) ∈ ℂ)
4341, 42, 41mul32d 8198 . . . . . . . 8 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) = (((-1↑𝑁) · (-1↑𝑁)) · (2↑𝐻)))
4418nn0cnd 9323 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
45442timesd 9253 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) = (𝑁 + 𝑁))
4645eqcomd 2202 . . . . . . . . . . 11 (𝜑 → (𝑁 + 𝑁) = (2 · 𝑁))
4746oveq2d 5941 . . . . . . . . . 10 (𝜑 → (-1↑(𝑁 + 𝑁)) = (-1↑(2 · 𝑁)))
48 neg1cn 9114 . . . . . . . . . . . 12 -1 ∈ ℂ
4948a1i 9 . . . . . . . . . . 11 (𝜑 → -1 ∈ ℂ)
5049, 18, 18expaddd 10786 . . . . . . . . . 10 (𝜑 → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁)))
5118nn0zd 9465 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
52 m1expeven 10697 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1)
5351, 52syl 14 . . . . . . . . . 10 (𝜑 → (-1↑(2 · 𝑁)) = 1)
5447, 50, 533eqtr3d 2237 . . . . . . . . 9 (𝜑 → ((-1↑𝑁) · (-1↑𝑁)) = 1)
5554oveq1d 5940 . . . . . . . 8 (𝜑 → (((-1↑𝑁) · (-1↑𝑁)) · (2↑𝐻)) = (1 · (2↑𝐻)))
5642mullidd 8063 . . . . . . . 8 (𝜑 → (1 · (2↑𝐻)) = (2↑𝐻))
5743, 55, 563eqtrd 2233 . . . . . . 7 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) = (2↑𝐻))
5857oveq1d 5940 . . . . . 6 (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((2↑𝐻) mod 𝑃))
5941mullidd 8063 . . . . . . 7 (𝜑 → (1 · (-1↑𝑁)) = (-1↑𝑁))
6059oveq1d 5940 . . . . . 6 (𝜑 → ((1 · (-1↑𝑁)) mod 𝑃) = ((-1↑𝑁) mod 𝑃))
6158, 60eqeq12d 2211 . . . . 5 (𝜑 → (((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃) ↔ ((2↑𝐻) mod 𝑃) = ((-1↑𝑁) mod 𝑃)))
622oveq2i 5936 . . . . . . . 8 (2↑𝐻) = (2↑((𝑃 − 1) / 2))
6362oveq1i 5935 . . . . . . 7 ((2↑𝐻) mod 𝑃) = ((2↑((𝑃 − 1) / 2)) mod 𝑃)
6463eqeq1i 2204 . . . . . 6 (((2↑𝐻) mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ ((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑𝑁) mod 𝑃))
65 2z 9373 . . . . . . . . . 10 2 ∈ ℤ
66 lgsvalmod 15368 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2 /L 𝑃) mod 𝑃) = ((2↑((𝑃 − 1) / 2)) mod 𝑃))
6765, 1, 66sylancr 414 . . . . . . . . 9 (𝜑 → ((2 /L 𝑃) mod 𝑃) = ((2↑((𝑃 − 1) / 2)) mod 𝑃))
6867eqcomd 2202 . . . . . . . 8 (𝜑 → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((2 /L 𝑃) mod 𝑃))
6968eqeq1d 2205 . . . . . . 7 (𝜑 → (((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ ((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃)))
701, 4, 2, 5gausslemma2dlem0i 15406 . . . . . . 7 (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
7169, 70sylbid 150 . . . . . 6 (𝜑 → (((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
7264, 71biimtrid 152 . . . . 5 (𝜑 → (((2↑𝐻) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
7361, 72sylbid 150 . . . 4 (𝜑 → (((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
7440, 73syld 45 . . 3 (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
7516, 74sylbid 150 . 2 (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1 → (2 /L 𝑃) = (-1↑𝑁)))
766, 75mpd 13 1 (𝜑 → (2 /L 𝑃) = (-1↑𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  cdif 3154  ifcif 3562  {csn 3623   class class class wbr 4034  cmpt 4095  cfv 5259  (class class class)co 5925  cc 7896  0cc0 7898  1c1 7899   + caddc 7901   · cmul 7903   < clt 8080  cmin 8216  -cneg 8217   / cdiv 8718  cn 9009  2c2 9060  4c4 9062  0cn0 9268  cz 9345  cq 9712  ...cfz 10102  cfl 10377   mod cmo 10433  cexp 10649  cprime 12302   /L clgs 15346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-2o 6484  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-ioo 9986  df-fz 10103  df-fzo 10237  df-fl 10379  df-mod 10434  df-seqfrec 10559  df-exp 10650  df-fac 10837  df-ihash 10887  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-clim 11463  df-proddc 11735  df-dvds 11972  df-gcd 12148  df-prm 12303  df-phi 12406  df-pc 12481  df-lgs 15347
This theorem is referenced by:  2lgs  15453
  Copyright terms: Public domain W3C validator