ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gausslemma2d GIF version

Theorem gausslemma2d 15756
Description: Gauss' Lemma (see also theorem 9.6 in [ApostolNT] p. 182) for integer 2: Let p be an odd prime. Let S = {2, 4, 6, ..., p - 1}. Let n denote the number of elements of S whose least positive residue modulo p is greater than p/2. Then ( 2 | p ) = (-1)^n. (Contributed by AV, 14-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
gausslemma2d.n 𝑁 = (𝐻𝑀)
Assertion
Ref Expression
gausslemma2d (𝜑 → (2 /L 𝑃) = (-1↑𝑁))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑥,𝑀
Allowed substitution hints:   𝑅(𝑥)   𝑁(𝑥)

Proof of Theorem gausslemma2d
StepHypRef Expression
1 gausslemma2d.p . . 3 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 gausslemma2d.h . . 3 𝐻 = ((𝑃 − 1) / 2)
3 gausslemma2d.r . . 3 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
4 gausslemma2d.m . . 3 𝑀 = (⌊‘(𝑃 / 4))
5 gausslemma2d.n . . 3 𝑁 = (𝐻𝑀)
61, 2, 3, 4, 5gausslemma2dlem7 15755 . 2 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1)
71gausslemma2dlem0a 15736 . . . . . . 7 (𝜑𝑃 ∈ ℕ)
8 nnq 9836 . . . . . . 7 (𝑃 ∈ ℕ → 𝑃 ∈ ℚ)
97, 8syl 14 . . . . . 6 (𝜑𝑃 ∈ ℚ)
10 eldifi 3326 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
11 prmgt1 12662 . . . . . . 7 (𝑃 ∈ ℙ → 1 < 𝑃)
121, 10, 113syl 17 . . . . . 6 (𝜑 → 1 < 𝑃)
13 q1mod 10586 . . . . . 6 ((𝑃 ∈ ℚ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
149, 12, 13syl2anc 411 . . . . 5 (𝜑 → (1 mod 𝑃) = 1)
1514eqcomd 2235 . . . 4 (𝜑 → 1 = (1 mod 𝑃))
1615eqeq2d 2241 . . 3 (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1 ↔ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)))
17 neg1z 9486 . . . . . . . . . 10 -1 ∈ ℤ
181, 4, 2, 5gausslemma2dlem0h 15743 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
19 zexpcl 10784 . . . . . . . . . 10 ((-1 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) ∈ ℤ)
2017, 18, 19sylancr 414 . . . . . . . . 9 (𝜑 → (-1↑𝑁) ∈ ℤ)
21 2nn 9280 . . . . . . . . . . . 12 2 ∈ ℕ
2221a1i 9 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℕ)
231, 2gausslemma2dlem0b 15737 . . . . . . . . . . . 12 (𝜑𝐻 ∈ ℕ)
2423nnnn0d 9430 . . . . . . . . . . 11 (𝜑𝐻 ∈ ℕ0)
2522, 24nnexpcld 10925 . . . . . . . . . 10 (𝜑 → (2↑𝐻) ∈ ℕ)
2625nnzd 9576 . . . . . . . . 9 (𝜑 → (2↑𝐻) ∈ ℤ)
2720, 26zmulcld 9583 . . . . . . . 8 (𝜑 → ((-1↑𝑁) · (2↑𝐻)) ∈ ℤ)
28 zq 9829 . . . . . . . 8 (((-1↑𝑁) · (2↑𝐻)) ∈ ℤ → ((-1↑𝑁) · (2↑𝐻)) ∈ ℚ)
2927, 28syl 14 . . . . . . 7 (𝜑 → ((-1↑𝑁) · (2↑𝐻)) ∈ ℚ)
3029adantr 276 . . . . . 6 ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → ((-1↑𝑁) · (2↑𝐻)) ∈ ℚ)
31 1z 9480 . . . . . . 7 1 ∈ ℤ
32 zq 9829 . . . . . . 7 (1 ∈ ℤ → 1 ∈ ℚ)
3331, 32mp1i 10 . . . . . 6 ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → 1 ∈ ℚ)
3420adantr 276 . . . . . 6 ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → (-1↑𝑁) ∈ ℤ)
359adantr 276 . . . . . 6 ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → 𝑃 ∈ ℚ)
367nngt0d 9162 . . . . . . 7 (𝜑 → 0 < 𝑃)
3736adantr 276 . . . . . 6 ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → 0 < 𝑃)
38 simpr 110 . . . . . 6 ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃))
3930, 33, 34, 35, 37, 38modqmul1 10607 . . . . 5 ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → ((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃))
4039ex 115 . . . 4 (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃) → ((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃)))
4120zcnd 9578 . . . . . . . . 9 (𝜑 → (-1↑𝑁) ∈ ℂ)
4225nncnd 9132 . . . . . . . . 9 (𝜑 → (2↑𝐻) ∈ ℂ)
4341, 42, 41mul32d 8307 . . . . . . . 8 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) = (((-1↑𝑁) · (-1↑𝑁)) · (2↑𝐻)))
4418nn0cnd 9432 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
45442timesd 9362 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) = (𝑁 + 𝑁))
4645eqcomd 2235 . . . . . . . . . . 11 (𝜑 → (𝑁 + 𝑁) = (2 · 𝑁))
4746oveq2d 6023 . . . . . . . . . 10 (𝜑 → (-1↑(𝑁 + 𝑁)) = (-1↑(2 · 𝑁)))
48 neg1cn 9223 . . . . . . . . . . . 12 -1 ∈ ℂ
4948a1i 9 . . . . . . . . . . 11 (𝜑 → -1 ∈ ℂ)
5049, 18, 18expaddd 10905 . . . . . . . . . 10 (𝜑 → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁)))
5118nn0zd 9575 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
52 m1expeven 10816 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1)
5351, 52syl 14 . . . . . . . . . 10 (𝜑 → (-1↑(2 · 𝑁)) = 1)
5447, 50, 533eqtr3d 2270 . . . . . . . . 9 (𝜑 → ((-1↑𝑁) · (-1↑𝑁)) = 1)
5554oveq1d 6022 . . . . . . . 8 (𝜑 → (((-1↑𝑁) · (-1↑𝑁)) · (2↑𝐻)) = (1 · (2↑𝐻)))
5642mullidd 8172 . . . . . . . 8 (𝜑 → (1 · (2↑𝐻)) = (2↑𝐻))
5743, 55, 563eqtrd 2266 . . . . . . 7 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) = (2↑𝐻))
5857oveq1d 6022 . . . . . 6 (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((2↑𝐻) mod 𝑃))
5941mullidd 8172 . . . . . . 7 (𝜑 → (1 · (-1↑𝑁)) = (-1↑𝑁))
6059oveq1d 6022 . . . . . 6 (𝜑 → ((1 · (-1↑𝑁)) mod 𝑃) = ((-1↑𝑁) mod 𝑃))
6158, 60eqeq12d 2244 . . . . 5 (𝜑 → (((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃) ↔ ((2↑𝐻) mod 𝑃) = ((-1↑𝑁) mod 𝑃)))
622oveq2i 6018 . . . . . . . 8 (2↑𝐻) = (2↑((𝑃 − 1) / 2))
6362oveq1i 6017 . . . . . . 7 ((2↑𝐻) mod 𝑃) = ((2↑((𝑃 − 1) / 2)) mod 𝑃)
6463eqeq1i 2237 . . . . . 6 (((2↑𝐻) mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ ((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑𝑁) mod 𝑃))
65 2z 9482 . . . . . . . . . 10 2 ∈ ℤ
66 lgsvalmod 15706 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2 /L 𝑃) mod 𝑃) = ((2↑((𝑃 − 1) / 2)) mod 𝑃))
6765, 1, 66sylancr 414 . . . . . . . . 9 (𝜑 → ((2 /L 𝑃) mod 𝑃) = ((2↑((𝑃 − 1) / 2)) mod 𝑃))
6867eqcomd 2235 . . . . . . . 8 (𝜑 → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((2 /L 𝑃) mod 𝑃))
6968eqeq1d 2238 . . . . . . 7 (𝜑 → (((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ ((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃)))
701, 4, 2, 5gausslemma2dlem0i 15744 . . . . . . 7 (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
7169, 70sylbid 150 . . . . . 6 (𝜑 → (((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
7264, 71biimtrid 152 . . . . 5 (𝜑 → (((2↑𝐻) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
7361, 72sylbid 150 . . . 4 (𝜑 → (((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
7440, 73syld 45 . . 3 (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
7516, 74sylbid 150 . 2 (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1 → (2 /L 𝑃) = (-1↑𝑁)))
766, 75mpd 13 1 (𝜑 → (2 /L 𝑃) = (-1↑𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  cdif 3194  ifcif 3602  {csn 3666   class class class wbr 4083  cmpt 4145  cfv 5318  (class class class)co 6007  cc 8005  0cc0 8007  1c1 8008   + caddc 8010   · cmul 8012   < clt 8189  cmin 8325  -cneg 8326   / cdiv 8827  cn 9118  2c2 9169  4c4 9171  0cn0 9377  cz 9454  cq 9822  ...cfz 10212  cfl 10496   mod cmo 10552  cexp 10768  cprime 12637   /L clgs 15684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-xor 1418  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-2o 6569  df-oadd 6572  df-er 6688  df-en 6896  df-dom 6897  df-fin 6898  df-sup 7159  df-inf 7160  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-ioo 10096  df-fz 10213  df-fzo 10347  df-fl 10498  df-mod 10553  df-seqfrec 10678  df-exp 10769  df-fac 10956  df-ihash 11006  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-proddc 12070  df-dvds 12307  df-gcd 12483  df-prm 12638  df-phi 12741  df-pc 12816  df-lgs 15685
This theorem is referenced by:  2lgs  15791
  Copyright terms: Public domain W3C validator