| Step | Hyp | Ref
 | Expression | 
| 1 |   | lmbr.2 | 
. . 3
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | 
| 2 | 1 | lmbr 14449 | 
. 2
⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑧 ∈ ran ℤ≥(𝐹 ↾ 𝑧):𝑧⟶𝑢)))) | 
| 3 |   | uzf 9604 | 
. . . . . . . 8
⊢
ℤ≥:ℤ⟶𝒫 ℤ | 
| 4 |   | ffn 5407 | 
. . . . . . . 8
⊢
(ℤ≥:ℤ⟶𝒫 ℤ →
ℤ≥ Fn ℤ) | 
| 5 |   | reseq2 4941 | 
. . . . . . . . . 10
⊢ (𝑧 =
(ℤ≥‘𝑗) → (𝐹 ↾ 𝑧) = (𝐹 ↾ (ℤ≥‘𝑗))) | 
| 6 |   | id 19 | 
. . . . . . . . . 10
⊢ (𝑧 =
(ℤ≥‘𝑗) → 𝑧 = (ℤ≥‘𝑗)) | 
| 7 | 5, 6 | feq12d 5397 | 
. . . . . . . . 9
⊢ (𝑧 =
(ℤ≥‘𝑗) → ((𝐹 ↾ 𝑧):𝑧⟶𝑢 ↔ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑢)) | 
| 8 | 7 | rexrn 5699 | 
. . . . . . . 8
⊢
(ℤ≥ Fn ℤ → (∃𝑧 ∈ ran ℤ≥(𝐹 ↾ 𝑧):𝑧⟶𝑢 ↔ ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑢)) | 
| 9 | 3, 4, 8 | mp2b 8 | 
. . . . . . 7
⊢
(∃𝑧 ∈ ran
ℤ≥(𝐹
↾ 𝑧):𝑧⟶𝑢 ↔ ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑢) | 
| 10 |   | pmfun 6727 | 
. . . . . . . . . . 11
⊢ (𝐹 ∈ (𝑋 ↑pm ℂ) →
Fun 𝐹) | 
| 11 | 10 | ad2antrl 490 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
𝑃 ∈ 𝑋)) → Fun 𝐹) | 
| 12 |   | ffvresb 5725 | 
. . . . . . . . . 10
⊢ (Fun
𝐹 → ((𝐹 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑢 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) | 
| 13 | 11, 12 | syl 14 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
𝑃 ∈ 𝑋)) → ((𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑢 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) | 
| 14 | 13 | rexbidv 2498 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
𝑃 ∈ 𝑋)) → (∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑢 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) | 
| 15 |   | lmbr2.5 | 
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| 16 | 15 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
𝑃 ∈ 𝑋)) → 𝑀 ∈ ℤ) | 
| 17 |   | lmbr2.4 | 
. . . . . . . . . 10
⊢ 𝑍 =
(ℤ≥‘𝑀) | 
| 18 | 17 | rexuz3 11155 | 
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ →
(∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) | 
| 19 | 16, 18 | syl 14 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
𝑃 ∈ 𝑋)) → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) | 
| 20 | 14, 19 | bitr4d 191 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
𝑃 ∈ 𝑋)) → (∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑢 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) | 
| 21 | 9, 20 | bitrid 192 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
𝑃 ∈ 𝑋)) → (∃𝑧 ∈ ran ℤ≥(𝐹 ↾ 𝑧):𝑧⟶𝑢 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) | 
| 22 | 21 | imbi2d 230 | 
. . . . 5
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
𝑃 ∈ 𝑋)) → ((𝑃 ∈ 𝑢 → ∃𝑧 ∈ ran ℤ≥(𝐹 ↾ 𝑧):𝑧⟶𝑢) ↔ (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)))) | 
| 23 | 22 | ralbidv 2497 | 
. . . 4
⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
𝑃 ∈ 𝑋)) → (∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑧 ∈ ran ℤ≥(𝐹 ↾ 𝑧):𝑧⟶𝑢) ↔ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)))) | 
| 24 | 23 | pm5.32da 452 | 
. . 3
⊢ (𝜑 → (((𝐹 ∈ (𝑋 ↑pm ℂ) ∧
𝑃 ∈ 𝑋) ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑧 ∈ ran ℤ≥(𝐹 ↾ 𝑧):𝑧⟶𝑢)) ↔ ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧
𝑃 ∈ 𝑋) ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) | 
| 25 |   | df-3an 982 | 
. . 3
⊢ ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧
𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑧 ∈ ran ℤ≥(𝐹 ↾ 𝑧):𝑧⟶𝑢)) ↔ ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧
𝑃 ∈ 𝑋) ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑧 ∈ ran ℤ≥(𝐹 ↾ 𝑧):𝑧⟶𝑢))) | 
| 26 |   | df-3an 982 | 
. . 3
⊢ ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧
𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))) ↔ ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧
𝑃 ∈ 𝑋) ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢)))) | 
| 27 | 24, 25, 26 | 3bitr4g 223 | 
. 2
⊢ (𝜑 → ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧
𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑧 ∈ ran ℤ≥(𝐹 ↾ 𝑧):𝑧⟶𝑢)) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) | 
| 28 | 2, 27 | bitrd 188 | 
1
⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) |