ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmbr2 GIF version

Theorem lmbr2 14896
Description: Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space using an arbitrary upper set of integers. (Contributed by Mario Carneiro, 14-Nov-2013.)
Hypotheses
Ref Expression
lmbr.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
lmbr2.4 𝑍 = (ℤ𝑀)
lmbr2.5 (𝜑𝑀 ∈ ℤ)
Assertion
Ref Expression
lmbr2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
Distinct variable groups:   𝑗,𝑘,𝑢,𝐹   𝑗,𝐽,𝑘,𝑢   𝜑,𝑗,𝑘,𝑢   𝑗,𝑍,𝑘,𝑢   𝑗,𝑀   𝑃,𝑗,𝑘,𝑢   𝑗,𝑋,𝑘,𝑢
Allowed substitution hints:   𝑀(𝑢,𝑘)

Proof of Theorem lmbr2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 lmbr.2 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
21lmbr 14895 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢))))
3 uzf 9733 . . . . . . . 8 :ℤ⟶𝒫 ℤ
4 ffn 5473 . . . . . . . 8 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
5 reseq2 5000 . . . . . . . . . 10 (𝑧 = (ℤ𝑗) → (𝐹𝑧) = (𝐹 ↾ (ℤ𝑗)))
6 id 19 . . . . . . . . . 10 (𝑧 = (ℤ𝑗) → 𝑧 = (ℤ𝑗))
75, 6feq12d 5463 . . . . . . . . 9 (𝑧 = (ℤ𝑗) → ((𝐹𝑧):𝑧𝑢 ↔ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑢))
87rexrn 5774 . . . . . . . 8 (ℤ Fn ℤ → (∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢 ↔ ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑢))
93, 4, 8mp2b 8 . . . . . . 7 (∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢 ↔ ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑢)
10 pmfun 6823 . . . . . . . . . . 11 (𝐹 ∈ (𝑋pm ℂ) → Fun 𝐹)
1110ad2antrl 490 . . . . . . . . . 10 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → Fun 𝐹)
12 ffvresb 5800 . . . . . . . . . 10 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑢 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
1311, 12syl 14 . . . . . . . . 9 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑢 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
1413rexbidv 2531 . . . . . . . 8 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → (∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑢 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
15 lmbr2.5 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
1615adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → 𝑀 ∈ ℤ)
17 lmbr2.4 . . . . . . . . . 10 𝑍 = (ℤ𝑀)
1817rexuz3 11509 . . . . . . . . 9 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
1916, 18syl 14 . . . . . . . 8 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
2014, 19bitr4d 191 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → (∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑢 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
219, 20bitrid 192 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → (∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
2221imbi2d 230 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → ((𝑃𝑢 → ∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢) ↔ (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
2322ralbidv 2530 . . . 4 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢) ↔ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
2423pm5.32da 452 . . 3 (𝜑 → (((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢)) ↔ ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
25 df-3an 1004 . . 3 ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢)) ↔ ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢)))
26 df-3an 1004 . . 3 ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))) ↔ ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
2724, 25, 263bitr4g 223 . 2 (𝜑 → ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢)) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
282, 27bitrd 188 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  wral 2508  wrex 2509  𝒫 cpw 3649   class class class wbr 4083  dom cdm 4719  ran crn 4720  cres 4721  Fun wfun 5312   Fn wfn 5313  wf 5314  cfv 5318  (class class class)co 6007  pm cpm 6804  cc 8005  cz 9454  cuz 9730  TopOnctopon 14692  𝑡clm 14869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-pm 6806  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-n0 9378  df-z 9455  df-uz 9731  df-top 14680  df-topon 14693  df-lm 14872
This theorem is referenced by:  lmbrf  14897  lmcvg  14899  lmres  14930  lmtopcnp  14932
  Copyright terms: Public domain W3C validator