ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmbr2 GIF version

Theorem lmbr2 13799
Description: Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space using an arbitrary upper set of integers. (Contributed by Mario Carneiro, 14-Nov-2013.)
Hypotheses
Ref Expression
lmbr.2 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
lmbr2.4 𝑍 = (β„€β‰₯β€˜π‘€)
lmbr2.5 (πœ‘ β†’ 𝑀 ∈ β„€)
Assertion
Ref Expression
lmbr2 (πœ‘ β†’ (𝐹(β‡π‘‘β€˜π½)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))))
Distinct variable groups:   𝑗,π‘˜,𝑒,𝐹   𝑗,𝐽,π‘˜,𝑒   πœ‘,𝑗,π‘˜,𝑒   𝑗,𝑍,π‘˜,𝑒   𝑗,𝑀   𝑃,𝑗,π‘˜,𝑒   𝑗,𝑋,π‘˜,𝑒
Allowed substitution hints:   𝑀(𝑒,π‘˜)

Proof of Theorem lmbr2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 lmbr.2 . . 3 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
21lmbr 13798 . 2 (πœ‘ β†’ (𝐹(β‡π‘‘β€˜π½)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘§ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑧):π‘§βŸΆπ‘’))))
3 uzf 9533 . . . . . . . 8 β„€β‰₯:β„€βŸΆπ’« β„€
4 ffn 5367 . . . . . . . 8 (β„€β‰₯:β„€βŸΆπ’« β„€ β†’ β„€β‰₯ Fn β„€)
5 reseq2 4904 . . . . . . . . . 10 (𝑧 = (β„€β‰₯β€˜π‘—) β†’ (𝐹 β†Ύ 𝑧) = (𝐹 β†Ύ (β„€β‰₯β€˜π‘—)))
6 id 19 . . . . . . . . . 10 (𝑧 = (β„€β‰₯β€˜π‘—) β†’ 𝑧 = (β„€β‰₯β€˜π‘—))
75, 6feq12d 5357 . . . . . . . . 9 (𝑧 = (β„€β‰₯β€˜π‘—) β†’ ((𝐹 β†Ύ 𝑧):π‘§βŸΆπ‘’ ↔ (𝐹 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)βŸΆπ‘’))
87rexrn 5655 . . . . . . . 8 (β„€β‰₯ Fn β„€ β†’ (βˆƒπ‘§ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑧):π‘§βŸΆπ‘’ ↔ βˆƒπ‘— ∈ β„€ (𝐹 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)βŸΆπ‘’))
93, 4, 8mp2b 8 . . . . . . 7 (βˆƒπ‘§ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑧):π‘§βŸΆπ‘’ ↔ βˆƒπ‘— ∈ β„€ (𝐹 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)βŸΆπ‘’)
10 pmfun 6670 . . . . . . . . . . 11 (𝐹 ∈ (𝑋 ↑pm β„‚) β†’ Fun 𝐹)
1110ad2antrl 490 . . . . . . . . . 10 ((πœ‘ ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋)) β†’ Fun 𝐹)
12 ffvresb 5681 . . . . . . . . . 10 (Fun 𝐹 β†’ ((𝐹 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)βŸΆπ‘’ ↔ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))
1311, 12syl 14 . . . . . . . . 9 ((πœ‘ ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋)) β†’ ((𝐹 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)βŸΆπ‘’ ↔ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))
1413rexbidv 2478 . . . . . . . 8 ((πœ‘ ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋)) β†’ (βˆƒπ‘— ∈ β„€ (𝐹 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)βŸΆπ‘’ ↔ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))
15 lmbr2.5 . . . . . . . . . 10 (πœ‘ β†’ 𝑀 ∈ β„€)
1615adantr 276 . . . . . . . . 9 ((πœ‘ ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋)) β†’ 𝑀 ∈ β„€)
17 lmbr2.4 . . . . . . . . . 10 𝑍 = (β„€β‰₯β€˜π‘€)
1817rexuz3 11001 . . . . . . . . 9 (𝑀 ∈ β„€ β†’ (βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒) ↔ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))
1916, 18syl 14 . . . . . . . 8 ((πœ‘ ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋)) β†’ (βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒) ↔ βˆƒπ‘— ∈ β„€ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))
2014, 19bitr4d 191 . . . . . . 7 ((πœ‘ ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋)) β†’ (βˆƒπ‘— ∈ β„€ (𝐹 β†Ύ (β„€β‰₯β€˜π‘—)):(β„€β‰₯β€˜π‘—)βŸΆπ‘’ ↔ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))
219, 20bitrid 192 . . . . . 6 ((πœ‘ ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋)) β†’ (βˆƒπ‘§ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑧):π‘§βŸΆπ‘’ ↔ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))
2221imbi2d 230 . . . . 5 ((πœ‘ ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋)) β†’ ((𝑃 ∈ 𝑒 β†’ βˆƒπ‘§ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑧):π‘§βŸΆπ‘’) ↔ (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒))))
2322ralbidv 2477 . . . 4 ((πœ‘ ∧ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋)) β†’ (βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘§ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑧):π‘§βŸΆπ‘’) ↔ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒))))
2423pm5.32da 452 . . 3 (πœ‘ β†’ (((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘§ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑧):π‘§βŸΆπ‘’)) ↔ ((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))))
25 df-3an 980 . . 3 ((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘§ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑧):π‘§βŸΆπ‘’)) ↔ ((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘§ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑧):π‘§βŸΆπ‘’)))
26 df-3an 980 . . 3 ((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒))) ↔ ((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋) ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒))))
2724, 25, 263bitr4g 223 . 2 (πœ‘ β†’ ((𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘§ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑧):π‘§βŸΆπ‘’)) ↔ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))))
282, 27bitrd 188 1 (πœ‘ β†’ (𝐹(β‡π‘‘β€˜π½)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   ∧ w3a 978   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  βˆƒwrex 2456  π’« cpw 3577   class class class wbr 4005  dom cdm 4628  ran crn 4629   β†Ύ cres 4630  Fun wfun 5212   Fn wfn 5213  βŸΆwf 5214  β€˜cfv 5218  (class class class)co 5877   ↑pm cpm 6651  β„‚cc 7811  β„€cz 9255  β„€β‰₯cuz 9530  TopOnctopon 13595  β‡π‘‘clm 13772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-pm 6653  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-top 13583  df-topon 13596  df-lm 13775
This theorem is referenced by:  lmbrf  13800  lmcvg  13802  lmres  13833  lmtopcnp  13835
  Copyright terms: Public domain W3C validator