Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmbr2 GIF version

Theorem lmbr2 12393
 Description: Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space using an arbitrary upper set of integers. (Contributed by Mario Carneiro, 14-Nov-2013.)
Hypotheses
Ref Expression
lmbr.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
lmbr2.4 𝑍 = (ℤ𝑀)
lmbr2.5 (𝜑𝑀 ∈ ℤ)
Assertion
Ref Expression
lmbr2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
Distinct variable groups:   𝑗,𝑘,𝑢,𝐹   𝑗,𝐽,𝑘,𝑢   𝜑,𝑗,𝑘,𝑢   𝑗,𝑍,𝑘,𝑢   𝑗,𝑀   𝑃,𝑗,𝑘,𝑢   𝑗,𝑋,𝑘,𝑢
Allowed substitution hints:   𝑀(𝑢,𝑘)

Proof of Theorem lmbr2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 lmbr.2 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
21lmbr 12392 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢))))
3 uzf 9336 . . . . . . . 8 :ℤ⟶𝒫 ℤ
4 ffn 5272 . . . . . . . 8 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
5 reseq2 4814 . . . . . . . . . 10 (𝑧 = (ℤ𝑗) → (𝐹𝑧) = (𝐹 ↾ (ℤ𝑗)))
6 id 19 . . . . . . . . . 10 (𝑧 = (ℤ𝑗) → 𝑧 = (ℤ𝑗))
75, 6feq12d 5262 . . . . . . . . 9 (𝑧 = (ℤ𝑗) → ((𝐹𝑧):𝑧𝑢 ↔ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑢))
87rexrn 5557 . . . . . . . 8 (ℤ Fn ℤ → (∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢 ↔ ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑢))
93, 4, 8mp2b 8 . . . . . . 7 (∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢 ↔ ∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑢)
10 pmfun 6562 . . . . . . . . . . 11 (𝐹 ∈ (𝑋pm ℂ) → Fun 𝐹)
1110ad2antrl 481 . . . . . . . . . 10 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → Fun 𝐹)
12 ffvresb 5583 . . . . . . . . . 10 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑢 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
1311, 12syl 14 . . . . . . . . 9 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑢 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
1413rexbidv 2438 . . . . . . . 8 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → (∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑢 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
15 lmbr2.5 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
1615adantr 274 . . . . . . . . 9 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → 𝑀 ∈ ℤ)
17 lmbr2.4 . . . . . . . . . 10 𝑍 = (ℤ𝑀)
1817rexuz3 10769 . . . . . . . . 9 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
1916, 18syl 14 . . . . . . . 8 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
2014, 19bitr4d 190 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → (∃𝑗 ∈ ℤ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑢 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
219, 20syl5bb 191 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → (∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
2221imbi2d 229 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → ((𝑃𝑢 → ∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢) ↔ (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
2322ralbidv 2437 . . . 4 ((𝜑 ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢) ↔ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
2423pm5.32da 447 . . 3 (𝜑 → (((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢)) ↔ ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
25 df-3an 964 . . 3 ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢)) ↔ ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢)))
26 df-3an 964 . . 3 ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))) ↔ ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
2724, 25, 263bitr4g 222 . 2 (𝜑 → ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑧 ∈ ran ℤ(𝐹𝑧):𝑧𝑢)) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
282, 27bitrd 187 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 962   = wceq 1331   ∈ wcel 1480  ∀wral 2416  ∃wrex 2417  𝒫 cpw 3510   class class class wbr 3929  dom cdm 4539  ran crn 4540   ↾ cres 4541  Fun wfun 5117   Fn wfn 5118  ⟶wf 5119  ‘cfv 5123  (class class class)co 5774   ↑pm cpm 6543  ℂcc 7625  ℤcz 9061  ℤ≥cuz 9333  TopOnctopon 12187  ⇝𝑡clm 12366 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-addcom 7727  ax-addass 7729  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-0id 7735  ax-rnegex 7736  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743 This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-pm 6545  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-inn 8728  df-n0 8985  df-z 9062  df-uz 9334  df-top 12175  df-topon 12188  df-lm 12369 This theorem is referenced by:  lmbrf  12394  lmcvg  12396  lmres  12427  lmtopcnp  12429
 Copyright terms: Public domain W3C validator