Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > qre | GIF version |
Description: A rational number is a real number. (Contributed by NM, 14-Nov-2002.) |
Ref | Expression |
---|---|
qre | ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elq 9581 | . 2 ⊢ (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) | |
2 | zre 9216 | . . . . 5 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
3 | nnre 8885 | . . . . . 6 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℝ) | |
4 | nnap0 8907 | . . . . . 6 ⊢ (𝑦 ∈ ℕ → 𝑦 # 0) | |
5 | 3, 4 | jca 304 | . . . . 5 ⊢ (𝑦 ∈ ℕ → (𝑦 ∈ ℝ ∧ 𝑦 # 0)) |
6 | redivclap 8648 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑦 # 0) → (𝑥 / 𝑦) ∈ ℝ) | |
7 | 6 | 3expb 1199 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ (𝑦 ∈ ℝ ∧ 𝑦 # 0)) → (𝑥 / 𝑦) ∈ ℝ) |
8 | 2, 5, 7 | syl2an 287 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 / 𝑦) ∈ ℝ) |
9 | eleq1 2233 | . . . 4 ⊢ (𝐴 = (𝑥 / 𝑦) → (𝐴 ∈ ℝ ↔ (𝑥 / 𝑦) ∈ ℝ)) | |
10 | 8, 9 | syl5ibrcom 156 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → 𝐴 ∈ ℝ)) |
11 | 10 | rexlimivv 2593 | . 2 ⊢ (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → 𝐴 ∈ ℝ) |
12 | 1, 11 | sylbi 120 | 1 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 ∃wrex 2449 class class class wbr 3989 (class class class)co 5853 ℝcr 7773 0cc0 7774 # cap 8500 / cdiv 8589 ℕcn 8878 ℤcz 9212 ℚcq 9578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-z 9213 df-q 9579 |
This theorem is referenced by: qssre 9589 qltlen 9599 qlttri2 9600 irradd 9605 irrmul 9606 qletric 10200 qlelttric 10201 qltnle 10202 qdceq 10203 qbtwnz 10208 qbtwnxr 10214 qavgle 10215 ioo0 10216 ioom 10217 ico0 10218 ioc0 10219 flqcl 10229 flqlelt 10232 qfraclt1 10236 qfracge0 10237 flqge 10238 flqltnz 10243 flqwordi 10244 flqbi 10246 flqbi2 10247 flqaddz 10253 flqmulnn0 10255 flltdivnn0lt 10260 ceilqval 10262 ceiqge 10265 ceiqm1l 10267 ceiqle 10269 flqleceil 10273 flqeqceilz 10274 intfracq 10276 flqdiv 10277 modqval 10280 modq0 10285 mulqmod0 10286 negqmod0 10287 modqge0 10288 modqlt 10289 modqelico 10290 modqdiffl 10291 modqmulnn 10298 modqid 10305 modqid0 10306 modqabs 10313 modqabs2 10314 modqcyc 10315 mulqaddmodid 10320 modqmuladdim 10323 modqmuladdnn0 10324 modqltm1p1mod 10332 q2txmodxeq0 10340 q2submod 10341 modqdi 10348 modqsubdir 10349 qsqeqor 10586 fimaxq 10762 qabsor 11039 qdenre 11166 expcnvre 11466 flodddiv4t2lthalf 11896 sqrt2irraplemnn 12133 sqrt2irrap 12134 qnumgt0 12152 4sqlem6 12335 blssps 13221 blss 13222 qtopbas 13316 logbgcd1irraplemap 13681 qdencn 14059 apdifflemf 14078 |
Copyright terms: Public domain | W3C validator |