ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qre GIF version

Theorem qre 9171
Description: A rational number is a real number. (Contributed by NM, 14-Nov-2002.)
Assertion
Ref Expression
qre (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)

Proof of Theorem qre
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 9168 . 2 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
2 zre 8815 . . . . 5 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
3 nnre 8490 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
4 nnap0 8512 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 # 0)
53, 4jca 301 . . . . 5 (𝑦 ∈ ℕ → (𝑦 ∈ ℝ ∧ 𝑦 # 0))
6 redivclap 8259 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑦 # 0) → (𝑥 / 𝑦) ∈ ℝ)
763expb 1145 . . . . 5 ((𝑥 ∈ ℝ ∧ (𝑦 ∈ ℝ ∧ 𝑦 # 0)) → (𝑥 / 𝑦) ∈ ℝ)
82, 5, 7syl2an 284 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 / 𝑦) ∈ ℝ)
9 eleq1 2151 . . . 4 (𝐴 = (𝑥 / 𝑦) → (𝐴 ∈ ℝ ↔ (𝑥 / 𝑦) ∈ ℝ))
108, 9syl5ibrcom 156 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → 𝐴 ∈ ℝ))
1110rexlimivv 2495 . 2 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → 𝐴 ∈ ℝ)
121, 11sylbi 120 1 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1290  wcel 1439  wrex 2361   class class class wbr 3851  (class class class)co 5666  cr 7410  0cc0 7411   # cap 8119   / cdiv 8200  cn 8483  cz 8811  cq 9165
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-mulrcl 7505  ax-addcom 7506  ax-mulcom 7507  ax-addass 7508  ax-mulass 7509  ax-distr 7510  ax-i2m1 7511  ax-0lt1 7512  ax-1rid 7513  ax-0id 7514  ax-rnegex 7515  ax-precex 7516  ax-cnre 7517  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-apti 7521  ax-pre-ltadd 7522  ax-pre-mulgt0 7523  ax-pre-mulext 7524
This theorem depends on definitions:  df-bi 116  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-id 4129  df-po 4132  df-iso 4133  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-sub 7716  df-neg 7717  df-reap 8113  df-ap 8120  df-div 8201  df-inn 8484  df-z 8812  df-q 9166
This theorem is referenced by:  qssre  9176  qltlen  9186  qlttri2  9187  irradd  9192  irrmul  9193  qletric  9716  qlelttric  9717  qltnle  9718  qdceq  9719  qbtwnz  9724  qbtwnxr  9730  qavgle  9731  ioo0  9732  ioom  9733  ico0  9734  ioc0  9735  flqcl  9741  flqlelt  9744  qfraclt1  9748  qfracge0  9749  flqge  9750  flqltnz  9755  flqwordi  9756  flqbi  9758  flqbi2  9759  flqaddz  9765  flqmulnn0  9767  flltdivnn0lt  9772  ceilqval  9774  ceiqge  9777  ceiqm1l  9779  ceiqle  9781  flqleceil  9785  flqeqceilz  9786  intfracq  9788  flqdiv  9789  modqval  9792  modq0  9797  mulqmod0  9798  negqmod0  9799  modqge0  9800  modqlt  9801  modqelico  9802  modqdiffl  9803  modqmulnn  9810  modqid  9817  modqid0  9818  modqabs  9825  modqabs2  9826  modqcyc  9827  mulqaddmodid  9832  modqmuladdim  9835  modqmuladdnn0  9836  modqltm1p1mod  9844  q2txmodxeq0  9852  q2submod  9853  modqdi  9860  modqsubdir  9861  fimaxq  10296  qabsor  10569  qdenre  10696  expcnvre  10958  flodddiv4t2lthalf  11276  sqrt2irraplemnn  11496  sqrt2irrap  11497  qnumgt0  11515  qdencn  12187
  Copyright terms: Public domain W3C validator