| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > qre | GIF version | ||
| Description: A rational number is a real number. (Contributed by NM, 14-Nov-2002.) | 
| Ref | Expression | 
|---|---|
| qre | ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elq 9696 | . 2 ⊢ (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) | |
| 2 | zre 9330 | . . . . 5 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
| 3 | nnre 8997 | . . . . . 6 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℝ) | |
| 4 | nnap0 9019 | . . . . . 6 ⊢ (𝑦 ∈ ℕ → 𝑦 # 0) | |
| 5 | 3, 4 | jca 306 | . . . . 5 ⊢ (𝑦 ∈ ℕ → (𝑦 ∈ ℝ ∧ 𝑦 # 0)) | 
| 6 | redivclap 8758 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑦 # 0) → (𝑥 / 𝑦) ∈ ℝ) | |
| 7 | 6 | 3expb 1206 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ (𝑦 ∈ ℝ ∧ 𝑦 # 0)) → (𝑥 / 𝑦) ∈ ℝ) | 
| 8 | 2, 5, 7 | syl2an 289 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 / 𝑦) ∈ ℝ) | 
| 9 | eleq1 2259 | . . . 4 ⊢ (𝐴 = (𝑥 / 𝑦) → (𝐴 ∈ ℝ ↔ (𝑥 / 𝑦) ∈ ℝ)) | |
| 10 | 8, 9 | syl5ibrcom 157 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → 𝐴 ∈ ℝ)) | 
| 11 | 10 | rexlimivv 2620 | . 2 ⊢ (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → 𝐴 ∈ ℝ) | 
| 12 | 1, 11 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 class class class wbr 4033 (class class class)co 5922 ℝcr 7878 0cc0 7879 # cap 8608 / cdiv 8699 ℕcn 8990 ℤcz 9326 ℚcq 9693 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-z 9327 df-q 9694 | 
| This theorem is referenced by: qssre 9704 qltlen 9714 qlttri2 9715 irradd 9720 irrmul 9721 qletric 10331 qlelttric 10332 qltnle 10333 qdceq 10334 qdclt 10335 qdcle 10336 qbtwnz 10341 qbtwnxr 10347 qavgle 10348 ioo0 10349 ioom 10350 ico0 10351 ioc0 10352 xqltnle 10357 flqcl 10363 flqlelt 10366 qfraclt1 10370 qfracge0 10371 flqge 10372 flqltnz 10377 flqwordi 10378 flqbi 10380 flqbi2 10381 flqaddz 10387 flqmulnn0 10389 flltdivnn0lt 10394 ceilqval 10398 ceiqge 10401 ceiqm1l 10403 ceiqle 10405 flqleceil 10409 flqeqceilz 10410 intfracq 10412 flqdiv 10413 modqval 10416 modq0 10421 mulqmod0 10422 negqmod0 10423 modqge0 10424 modqlt 10425 modqelico 10426 modqdiffl 10427 modqmulnn 10434 modqid 10441 modqid0 10442 modqabs 10449 modqabs2 10450 modqcyc 10451 mulqaddmodid 10456 modqmuladdim 10459 modqmuladdnn0 10460 modqltm1p1mod 10468 q2txmodxeq0 10476 q2submod 10477 modqdi 10484 modqsubdir 10485 qsqeqor 10742 fimaxq 10919 qabsor 11240 qdenre 11367 expcnvre 11668 flodddiv4t2lthalf 12104 sqrt2irraplemnn 12347 sqrt2irrap 12348 qnumgt0 12366 4sqlem6 12552 blssps 14663 blss 14664 qtopbas 14758 logbgcd1irraplemap 15205 qdencn 15671 apdifflemf 15690 | 
| Copyright terms: Public domain | W3C validator |