| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qre | GIF version | ||
| Description: A rational number is a real number. (Contributed by NM, 14-Nov-2002.) |
| Ref | Expression |
|---|---|
| qre | ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elq 9813 | . 2 ⊢ (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) | |
| 2 | zre 9446 | . . . . 5 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
| 3 | nnre 9113 | . . . . . 6 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℝ) | |
| 4 | nnap0 9135 | . . . . . 6 ⊢ (𝑦 ∈ ℕ → 𝑦 # 0) | |
| 5 | 3, 4 | jca 306 | . . . . 5 ⊢ (𝑦 ∈ ℕ → (𝑦 ∈ ℝ ∧ 𝑦 # 0)) |
| 6 | redivclap 8874 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑦 # 0) → (𝑥 / 𝑦) ∈ ℝ) | |
| 7 | 6 | 3expb 1228 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ (𝑦 ∈ ℝ ∧ 𝑦 # 0)) → (𝑥 / 𝑦) ∈ ℝ) |
| 8 | 2, 5, 7 | syl2an 289 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 / 𝑦) ∈ ℝ) |
| 9 | eleq1 2292 | . . . 4 ⊢ (𝐴 = (𝑥 / 𝑦) → (𝐴 ∈ ℝ ↔ (𝑥 / 𝑦) ∈ ℝ)) | |
| 10 | 8, 9 | syl5ibrcom 157 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → 𝐴 ∈ ℝ)) |
| 11 | 10 | rexlimivv 2654 | . 2 ⊢ (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → 𝐴 ∈ ℝ) |
| 12 | 1, 11 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 class class class wbr 4082 (class class class)co 6000 ℝcr 7994 0cc0 7995 # cap 8724 / cdiv 8815 ℕcn 9106 ℤcz 9442 ℚcq 9810 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-z 9443 df-q 9811 |
| This theorem is referenced by: qssre 9821 qltlen 9831 qlttri2 9832 irradd 9837 irrmul 9838 qletric 10456 qlelttric 10457 qltnle 10458 qdceq 10459 qdclt 10460 qdcle 10461 qbtwnz 10466 qbtwnxr 10472 qavgle 10473 ioo0 10474 ioom 10475 ico0 10476 ioc0 10477 xqltnle 10482 flqcl 10488 flqlelt 10491 qfraclt1 10495 qfracge0 10496 flqge 10497 flqltnz 10502 flqwordi 10503 flqbi 10505 flqbi2 10506 flqaddz 10512 flqmulnn0 10514 flltdivnn0lt 10519 ceilqval 10523 ceiqge 10526 ceiqm1l 10528 ceiqle 10530 flqleceil 10534 flqeqceilz 10535 intfracq 10537 flqdiv 10538 modqval 10541 modq0 10546 mulqmod0 10547 negqmod0 10548 modqge0 10549 modqlt 10550 modqelico 10551 modqdiffl 10552 modqmulnn 10559 modqid 10566 modqid0 10567 modqabs 10574 modqabs2 10575 modqcyc 10576 mulqaddmodid 10581 modqmuladdim 10584 modqmuladdnn0 10585 modqltm1p1mod 10593 q2txmodxeq0 10601 q2submod 10602 modqdi 10609 modqsubdir 10610 qsqeqor 10867 fimaxq 11044 qabsor 11581 qdenre 11708 expcnvre 12009 flodddiv4t2lthalf 12445 bitsmod 12462 bitsinv1lem 12467 sqrt2irraplemnn 12696 sqrt2irrap 12697 qnumgt0 12715 4sqlem6 12901 blssps 15095 blss 15096 qtopbas 15190 logbgcd1irraplemap 15637 qdencn 16354 apdifflemf 16373 |
| Copyright terms: Public domain | W3C validator |