| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qre | GIF version | ||
| Description: A rational number is a real number. (Contributed by NM, 14-Nov-2002.) |
| Ref | Expression |
|---|---|
| qre | ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elq 9742 | . 2 ⊢ (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) | |
| 2 | zre 9375 | . . . . 5 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
| 3 | nnre 9042 | . . . . . 6 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℝ) | |
| 4 | nnap0 9064 | . . . . . 6 ⊢ (𝑦 ∈ ℕ → 𝑦 # 0) | |
| 5 | 3, 4 | jca 306 | . . . . 5 ⊢ (𝑦 ∈ ℕ → (𝑦 ∈ ℝ ∧ 𝑦 # 0)) |
| 6 | redivclap 8803 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑦 # 0) → (𝑥 / 𝑦) ∈ ℝ) | |
| 7 | 6 | 3expb 1206 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ (𝑦 ∈ ℝ ∧ 𝑦 # 0)) → (𝑥 / 𝑦) ∈ ℝ) |
| 8 | 2, 5, 7 | syl2an 289 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 / 𝑦) ∈ ℝ) |
| 9 | eleq1 2267 | . . . 4 ⊢ (𝐴 = (𝑥 / 𝑦) → (𝐴 ∈ ℝ ↔ (𝑥 / 𝑦) ∈ ℝ)) | |
| 10 | 8, 9 | syl5ibrcom 157 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → 𝐴 ∈ ℝ)) |
| 11 | 10 | rexlimivv 2628 | . 2 ⊢ (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → 𝐴 ∈ ℝ) |
| 12 | 1, 11 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 ∃wrex 2484 class class class wbr 4043 (class class class)co 5943 ℝcr 7923 0cc0 7924 # cap 8653 / cdiv 8744 ℕcn 9035 ℤcz 9371 ℚcq 9739 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-po 4342 df-iso 4343 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-z 9372 df-q 9740 |
| This theorem is referenced by: qssre 9750 qltlen 9760 qlttri2 9761 irradd 9766 irrmul 9767 qletric 10382 qlelttric 10383 qltnle 10384 qdceq 10385 qdclt 10386 qdcle 10387 qbtwnz 10392 qbtwnxr 10398 qavgle 10399 ioo0 10400 ioom 10401 ico0 10402 ioc0 10403 xqltnle 10408 flqcl 10414 flqlelt 10417 qfraclt1 10421 qfracge0 10422 flqge 10423 flqltnz 10428 flqwordi 10429 flqbi 10431 flqbi2 10432 flqaddz 10438 flqmulnn0 10440 flltdivnn0lt 10445 ceilqval 10449 ceiqge 10452 ceiqm1l 10454 ceiqle 10456 flqleceil 10460 flqeqceilz 10461 intfracq 10463 flqdiv 10464 modqval 10467 modq0 10472 mulqmod0 10473 negqmod0 10474 modqge0 10475 modqlt 10476 modqelico 10477 modqdiffl 10478 modqmulnn 10485 modqid 10492 modqid0 10493 modqabs 10500 modqabs2 10501 modqcyc 10502 mulqaddmodid 10507 modqmuladdim 10510 modqmuladdnn0 10511 modqltm1p1mod 10519 q2txmodxeq0 10527 q2submod 10528 modqdi 10535 modqsubdir 10536 qsqeqor 10793 fimaxq 10970 qabsor 11328 qdenre 11455 expcnvre 11756 flodddiv4t2lthalf 12192 bitsmod 12209 bitsinv1lem 12214 sqrt2irraplemnn 12443 sqrt2irrap 12444 qnumgt0 12462 4sqlem6 12648 blssps 14841 blss 14842 qtopbas 14936 logbgcd1irraplemap 15383 qdencn 15899 apdifflemf 15918 |
| Copyright terms: Public domain | W3C validator |