| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qre | GIF version | ||
| Description: A rational number is a real number. (Contributed by NM, 14-Nov-2002.) |
| Ref | Expression |
|---|---|
| qre | ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elq 9763 | . 2 ⊢ (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) | |
| 2 | zre 9396 | . . . . 5 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
| 3 | nnre 9063 | . . . . . 6 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℝ) | |
| 4 | nnap0 9085 | . . . . . 6 ⊢ (𝑦 ∈ ℕ → 𝑦 # 0) | |
| 5 | 3, 4 | jca 306 | . . . . 5 ⊢ (𝑦 ∈ ℕ → (𝑦 ∈ ℝ ∧ 𝑦 # 0)) |
| 6 | redivclap 8824 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑦 # 0) → (𝑥 / 𝑦) ∈ ℝ) | |
| 7 | 6 | 3expb 1207 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ (𝑦 ∈ ℝ ∧ 𝑦 # 0)) → (𝑥 / 𝑦) ∈ ℝ) |
| 8 | 2, 5, 7 | syl2an 289 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 / 𝑦) ∈ ℝ) |
| 9 | eleq1 2269 | . . . 4 ⊢ (𝐴 = (𝑥 / 𝑦) → (𝐴 ∈ ℝ ↔ (𝑥 / 𝑦) ∈ ℝ)) | |
| 10 | 8, 9 | syl5ibrcom 157 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → 𝐴 ∈ ℝ)) |
| 11 | 10 | rexlimivv 2630 | . 2 ⊢ (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → 𝐴 ∈ ℝ) |
| 12 | 1, 11 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∃wrex 2486 class class class wbr 4051 (class class class)co 5957 ℝcr 7944 0cc0 7945 # cap 8674 / cdiv 8765 ℕcn 9056 ℤcz 9392 ℚcq 9760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-po 4351 df-iso 4352 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-z 9393 df-q 9761 |
| This theorem is referenced by: qssre 9771 qltlen 9781 qlttri2 9782 irradd 9787 irrmul 9788 qletric 10406 qlelttric 10407 qltnle 10408 qdceq 10409 qdclt 10410 qdcle 10411 qbtwnz 10416 qbtwnxr 10422 qavgle 10423 ioo0 10424 ioom 10425 ico0 10426 ioc0 10427 xqltnle 10432 flqcl 10438 flqlelt 10441 qfraclt1 10445 qfracge0 10446 flqge 10447 flqltnz 10452 flqwordi 10453 flqbi 10455 flqbi2 10456 flqaddz 10462 flqmulnn0 10464 flltdivnn0lt 10469 ceilqval 10473 ceiqge 10476 ceiqm1l 10478 ceiqle 10480 flqleceil 10484 flqeqceilz 10485 intfracq 10487 flqdiv 10488 modqval 10491 modq0 10496 mulqmod0 10497 negqmod0 10498 modqge0 10499 modqlt 10500 modqelico 10501 modqdiffl 10502 modqmulnn 10509 modqid 10516 modqid0 10517 modqabs 10524 modqabs2 10525 modqcyc 10526 mulqaddmodid 10531 modqmuladdim 10534 modqmuladdnn0 10535 modqltm1p1mod 10543 q2txmodxeq0 10551 q2submod 10552 modqdi 10559 modqsubdir 10560 qsqeqor 10817 fimaxq 10994 qabsor 11461 qdenre 11588 expcnvre 11889 flodddiv4t2lthalf 12325 bitsmod 12342 bitsinv1lem 12347 sqrt2irraplemnn 12576 sqrt2irrap 12577 qnumgt0 12595 4sqlem6 12781 blssps 14974 blss 14975 qtopbas 15069 logbgcd1irraplemap 15516 qdencn 16107 apdifflemf 16126 |
| Copyright terms: Public domain | W3C validator |