ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qre GIF version

Theorem qre 9745
Description: A rational number is a real number. (Contributed by NM, 14-Nov-2002.)
Assertion
Ref Expression
qre (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)

Proof of Theorem qre
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 9742 . 2 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
2 zre 9375 . . . . 5 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
3 nnre 9042 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
4 nnap0 9064 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 # 0)
53, 4jca 306 . . . . 5 (𝑦 ∈ ℕ → (𝑦 ∈ ℝ ∧ 𝑦 # 0))
6 redivclap 8803 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑦 # 0) → (𝑥 / 𝑦) ∈ ℝ)
763expb 1206 . . . . 5 ((𝑥 ∈ ℝ ∧ (𝑦 ∈ ℝ ∧ 𝑦 # 0)) → (𝑥 / 𝑦) ∈ ℝ)
82, 5, 7syl2an 289 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 / 𝑦) ∈ ℝ)
9 eleq1 2267 . . . 4 (𝐴 = (𝑥 / 𝑦) → (𝐴 ∈ ℝ ↔ (𝑥 / 𝑦) ∈ ℝ))
108, 9syl5ibrcom 157 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → 𝐴 ∈ ℝ))
1110rexlimivv 2628 . 2 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → 𝐴 ∈ ℝ)
121, 11sylbi 121 1 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  wrex 2484   class class class wbr 4043  (class class class)co 5943  cr 7923  0cc0 7924   # cap 8653   / cdiv 8744  cn 9035  cz 9371  cq 9739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-po 4342  df-iso 4343  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-z 9372  df-q 9740
This theorem is referenced by:  qssre  9750  qltlen  9760  qlttri2  9761  irradd  9766  irrmul  9767  qletric  10382  qlelttric  10383  qltnle  10384  qdceq  10385  qdclt  10386  qdcle  10387  qbtwnz  10392  qbtwnxr  10398  qavgle  10399  ioo0  10400  ioom  10401  ico0  10402  ioc0  10403  xqltnle  10408  flqcl  10414  flqlelt  10417  qfraclt1  10421  qfracge0  10422  flqge  10423  flqltnz  10428  flqwordi  10429  flqbi  10431  flqbi2  10432  flqaddz  10438  flqmulnn0  10440  flltdivnn0lt  10445  ceilqval  10449  ceiqge  10452  ceiqm1l  10454  ceiqle  10456  flqleceil  10460  flqeqceilz  10461  intfracq  10463  flqdiv  10464  modqval  10467  modq0  10472  mulqmod0  10473  negqmod0  10474  modqge0  10475  modqlt  10476  modqelico  10477  modqdiffl  10478  modqmulnn  10485  modqid  10492  modqid0  10493  modqabs  10500  modqabs2  10501  modqcyc  10502  mulqaddmodid  10507  modqmuladdim  10510  modqmuladdnn0  10511  modqltm1p1mod  10519  q2txmodxeq0  10527  q2submod  10528  modqdi  10535  modqsubdir  10536  qsqeqor  10793  fimaxq  10970  qabsor  11328  qdenre  11455  expcnvre  11756  flodddiv4t2lthalf  12192  bitsmod  12209  bitsinv1lem  12214  sqrt2irraplemnn  12443  sqrt2irrap  12444  qnumgt0  12462  4sqlem6  12648  blssps  14841  blss  14842  qtopbas  14936  logbgcd1irraplemap  15383  qdencn  15899  apdifflemf  15918
  Copyright terms: Public domain W3C validator