![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > qre | GIF version |
Description: A rational number is a real number. (Contributed by NM, 14-Nov-2002.) |
Ref | Expression |
---|---|
qre | ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elq 9168 | . 2 ⊢ (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) | |
2 | zre 8815 | . . . . 5 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
3 | nnre 8490 | . . . . . 6 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℝ) | |
4 | nnap0 8512 | . . . . . 6 ⊢ (𝑦 ∈ ℕ → 𝑦 # 0) | |
5 | 3, 4 | jca 301 | . . . . 5 ⊢ (𝑦 ∈ ℕ → (𝑦 ∈ ℝ ∧ 𝑦 # 0)) |
6 | redivclap 8259 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑦 # 0) → (𝑥 / 𝑦) ∈ ℝ) | |
7 | 6 | 3expb 1145 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ (𝑦 ∈ ℝ ∧ 𝑦 # 0)) → (𝑥 / 𝑦) ∈ ℝ) |
8 | 2, 5, 7 | syl2an 284 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 / 𝑦) ∈ ℝ) |
9 | eleq1 2151 | . . . 4 ⊢ (𝐴 = (𝑥 / 𝑦) → (𝐴 ∈ ℝ ↔ (𝑥 / 𝑦) ∈ ℝ)) | |
10 | 8, 9 | syl5ibrcom 156 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → 𝐴 ∈ ℝ)) |
11 | 10 | rexlimivv 2495 | . 2 ⊢ (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → 𝐴 ∈ ℝ) |
12 | 1, 11 | sylbi 120 | 1 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1290 ∈ wcel 1439 ∃wrex 2361 class class class wbr 3851 (class class class)co 5666 ℝcr 7410 0cc0 7411 # cap 8119 / cdiv 8200 ℕcn 8483 ℤcz 8811 ℚcq 9165 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 ax-un 4269 ax-setind 4366 ax-cnex 7497 ax-resscn 7498 ax-1cn 7499 ax-1re 7500 ax-icn 7501 ax-addcl 7502 ax-addrcl 7503 ax-mulcl 7504 ax-mulrcl 7505 ax-addcom 7506 ax-mulcom 7507 ax-addass 7508 ax-mulass 7509 ax-distr 7510 ax-i2m1 7511 ax-0lt1 7512 ax-1rid 7513 ax-0id 7514 ax-rnegex 7515 ax-precex 7516 ax-cnre 7517 ax-pre-ltirr 7518 ax-pre-ltwlin 7519 ax-pre-lttrn 7520 ax-pre-apti 7521 ax-pre-ltadd 7522 ax-pre-mulgt0 7523 ax-pre-mulext 7524 |
This theorem depends on definitions: df-bi 116 df-3or 926 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-nel 2352 df-ral 2365 df-rex 2366 df-reu 2367 df-rmo 2368 df-rab 2369 df-v 2622 df-sbc 2842 df-csb 2935 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-int 3695 df-iun 3738 df-br 3852 df-opab 3906 df-mpt 3907 df-id 4129 df-po 4132 df-iso 4133 df-xp 4458 df-rel 4459 df-cnv 4460 df-co 4461 df-dm 4462 df-rn 4463 df-res 4464 df-ima 4465 df-iota 4993 df-fun 5030 df-fn 5031 df-f 5032 df-fv 5036 df-riota 5622 df-ov 5669 df-oprab 5670 df-mpt2 5671 df-1st 5925 df-2nd 5926 df-pnf 7585 df-mnf 7586 df-xr 7587 df-ltxr 7588 df-le 7589 df-sub 7716 df-neg 7717 df-reap 8113 df-ap 8120 df-div 8201 df-inn 8484 df-z 8812 df-q 9166 |
This theorem is referenced by: qssre 9176 qltlen 9186 qlttri2 9187 irradd 9192 irrmul 9193 qletric 9716 qlelttric 9717 qltnle 9718 qdceq 9719 qbtwnz 9724 qbtwnxr 9730 qavgle 9731 ioo0 9732 ioom 9733 ico0 9734 ioc0 9735 flqcl 9741 flqlelt 9744 qfraclt1 9748 qfracge0 9749 flqge 9750 flqltnz 9755 flqwordi 9756 flqbi 9758 flqbi2 9759 flqaddz 9765 flqmulnn0 9767 flltdivnn0lt 9772 ceilqval 9774 ceiqge 9777 ceiqm1l 9779 ceiqle 9781 flqleceil 9785 flqeqceilz 9786 intfracq 9788 flqdiv 9789 modqval 9792 modq0 9797 mulqmod0 9798 negqmod0 9799 modqge0 9800 modqlt 9801 modqelico 9802 modqdiffl 9803 modqmulnn 9810 modqid 9817 modqid0 9818 modqabs 9825 modqabs2 9826 modqcyc 9827 mulqaddmodid 9832 modqmuladdim 9835 modqmuladdnn0 9836 modqltm1p1mod 9844 q2txmodxeq0 9852 q2submod 9853 modqdi 9860 modqsubdir 9861 fimaxq 10296 qabsor 10569 qdenre 10696 expcnvre 10958 flodddiv4t2lthalf 11276 sqrt2irraplemnn 11496 sqrt2irrap 11497 qnumgt0 11515 qdencn 12187 |
Copyright terms: Public domain | W3C validator |