ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qre GIF version

Theorem qre 9625
Description: A rational number is a real number. (Contributed by NM, 14-Nov-2002.)
Assertion
Ref Expression
qre (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)

Proof of Theorem qre
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 9622 . 2 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
2 zre 9257 . . . . 5 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
3 nnre 8926 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
4 nnap0 8948 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 # 0)
53, 4jca 306 . . . . 5 (𝑦 ∈ ℕ → (𝑦 ∈ ℝ ∧ 𝑦 # 0))
6 redivclap 8688 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑦 # 0) → (𝑥 / 𝑦) ∈ ℝ)
763expb 1204 . . . . 5 ((𝑥 ∈ ℝ ∧ (𝑦 ∈ ℝ ∧ 𝑦 # 0)) → (𝑥 / 𝑦) ∈ ℝ)
82, 5, 7syl2an 289 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 / 𝑦) ∈ ℝ)
9 eleq1 2240 . . . 4 (𝐴 = (𝑥 / 𝑦) → (𝐴 ∈ ℝ ↔ (𝑥 / 𝑦) ∈ ℝ))
108, 9syl5ibrcom 157 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → 𝐴 ∈ ℝ))
1110rexlimivv 2600 . 2 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → 𝐴 ∈ ℝ)
121, 11sylbi 121 1 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wrex 2456   class class class wbr 4004  (class class class)co 5875  cr 7810  0cc0 7811   # cap 8538   / cdiv 8629  cn 8919  cz 9253  cq 9619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-po 4297  df-iso 4298  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-z 9254  df-q 9620
This theorem is referenced by:  qssre  9630  qltlen  9640  qlttri2  9641  irradd  9646  irrmul  9647  qletric  10244  qlelttric  10245  qltnle  10246  qdceq  10247  qbtwnz  10252  qbtwnxr  10258  qavgle  10259  ioo0  10260  ioom  10261  ico0  10262  ioc0  10263  flqcl  10273  flqlelt  10276  qfraclt1  10280  qfracge0  10281  flqge  10282  flqltnz  10287  flqwordi  10288  flqbi  10290  flqbi2  10291  flqaddz  10297  flqmulnn0  10299  flltdivnn0lt  10304  ceilqval  10306  ceiqge  10309  ceiqm1l  10311  ceiqle  10313  flqleceil  10317  flqeqceilz  10318  intfracq  10320  flqdiv  10321  modqval  10324  modq0  10329  mulqmod0  10330  negqmod0  10331  modqge0  10332  modqlt  10333  modqelico  10334  modqdiffl  10335  modqmulnn  10342  modqid  10349  modqid0  10350  modqabs  10357  modqabs2  10358  modqcyc  10359  mulqaddmodid  10364  modqmuladdim  10367  modqmuladdnn0  10368  modqltm1p1mod  10376  q2txmodxeq0  10384  q2submod  10385  modqdi  10392  modqsubdir  10393  qsqeqor  10631  fimaxq  10807  qabsor  11084  qdenre  11211  expcnvre  11511  flodddiv4t2lthalf  11942  sqrt2irraplemnn  12179  sqrt2irrap  12180  qnumgt0  12198  4sqlem6  12381  blssps  13930  blss  13931  qtopbas  14025  logbgcd1irraplemap  14390  qdencn  14778  apdifflemf  14797
  Copyright terms: Public domain W3C validator