| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qre | GIF version | ||
| Description: A rational number is a real number. (Contributed by NM, 14-Nov-2002.) |
| Ref | Expression |
|---|---|
| qre | ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elq 9715 | . 2 ⊢ (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) | |
| 2 | zre 9349 | . . . . 5 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
| 3 | nnre 9016 | . . . . . 6 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℝ) | |
| 4 | nnap0 9038 | . . . . . 6 ⊢ (𝑦 ∈ ℕ → 𝑦 # 0) | |
| 5 | 3, 4 | jca 306 | . . . . 5 ⊢ (𝑦 ∈ ℕ → (𝑦 ∈ ℝ ∧ 𝑦 # 0)) |
| 6 | redivclap 8777 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑦 # 0) → (𝑥 / 𝑦) ∈ ℝ) | |
| 7 | 6 | 3expb 1206 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ (𝑦 ∈ ℝ ∧ 𝑦 # 0)) → (𝑥 / 𝑦) ∈ ℝ) |
| 8 | 2, 5, 7 | syl2an 289 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 / 𝑦) ∈ ℝ) |
| 9 | eleq1 2259 | . . . 4 ⊢ (𝐴 = (𝑥 / 𝑦) → (𝐴 ∈ ℝ ↔ (𝑥 / 𝑦) ∈ ℝ)) | |
| 10 | 8, 9 | syl5ibrcom 157 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → 𝐴 ∈ ℝ)) |
| 11 | 10 | rexlimivv 2620 | . 2 ⊢ (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → 𝐴 ∈ ℝ) |
| 12 | 1, 11 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 class class class wbr 4034 (class class class)co 5925 ℝcr 7897 0cc0 7898 # cap 8627 / cdiv 8718 ℕcn 9009 ℤcz 9345 ℚcq 9712 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-mulrcl 7997 ax-addcom 7998 ax-mulcom 7999 ax-addass 8000 ax-mulass 8001 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-1rid 8005 ax-0id 8006 ax-rnegex 8007 ax-precex 8008 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-apti 8013 ax-pre-ltadd 8014 ax-pre-mulgt0 8015 ax-pre-mulext 8016 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-reap 8621 df-ap 8628 df-div 8719 df-inn 9010 df-z 9346 df-q 9713 |
| This theorem is referenced by: qssre 9723 qltlen 9733 qlttri2 9734 irradd 9739 irrmul 9740 qletric 10350 qlelttric 10351 qltnle 10352 qdceq 10353 qdclt 10354 qdcle 10355 qbtwnz 10360 qbtwnxr 10366 qavgle 10367 ioo0 10368 ioom 10369 ico0 10370 ioc0 10371 xqltnle 10376 flqcl 10382 flqlelt 10385 qfraclt1 10389 qfracge0 10390 flqge 10391 flqltnz 10396 flqwordi 10397 flqbi 10399 flqbi2 10400 flqaddz 10406 flqmulnn0 10408 flltdivnn0lt 10413 ceilqval 10417 ceiqge 10420 ceiqm1l 10422 ceiqle 10424 flqleceil 10428 flqeqceilz 10429 intfracq 10431 flqdiv 10432 modqval 10435 modq0 10440 mulqmod0 10441 negqmod0 10442 modqge0 10443 modqlt 10444 modqelico 10445 modqdiffl 10446 modqmulnn 10453 modqid 10460 modqid0 10461 modqabs 10468 modqabs2 10469 modqcyc 10470 mulqaddmodid 10475 modqmuladdim 10478 modqmuladdnn0 10479 modqltm1p1mod 10487 q2txmodxeq0 10495 q2submod 10496 modqdi 10503 modqsubdir 10504 qsqeqor 10761 fimaxq 10938 qabsor 11259 qdenre 11386 expcnvre 11687 flodddiv4t2lthalf 12123 bitsmod 12140 bitsinv1lem 12145 sqrt2irraplemnn 12374 sqrt2irrap 12375 qnumgt0 12393 4sqlem6 12579 blssps 14771 blss 14772 qtopbas 14866 logbgcd1irraplemap 15313 qdencn 15784 apdifflemf 15803 |
| Copyright terms: Public domain | W3C validator |