Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > qre | GIF version |
Description: A rational number is a real number. (Contributed by NM, 14-Nov-2002.) |
Ref | Expression |
---|---|
qre | ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elq 9509 | . 2 ⊢ (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) | |
2 | zre 9150 | . . . . 5 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
3 | nnre 8819 | . . . . . 6 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℝ) | |
4 | nnap0 8841 | . . . . . 6 ⊢ (𝑦 ∈ ℕ → 𝑦 # 0) | |
5 | 3, 4 | jca 304 | . . . . 5 ⊢ (𝑦 ∈ ℕ → (𝑦 ∈ ℝ ∧ 𝑦 # 0)) |
6 | redivclap 8583 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑦 # 0) → (𝑥 / 𝑦) ∈ ℝ) | |
7 | 6 | 3expb 1183 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ (𝑦 ∈ ℝ ∧ 𝑦 # 0)) → (𝑥 / 𝑦) ∈ ℝ) |
8 | 2, 5, 7 | syl2an 287 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 / 𝑦) ∈ ℝ) |
9 | eleq1 2217 | . . . 4 ⊢ (𝐴 = (𝑥 / 𝑦) → (𝐴 ∈ ℝ ↔ (𝑥 / 𝑦) ∈ ℝ)) | |
10 | 8, 9 | syl5ibrcom 156 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → 𝐴 ∈ ℝ)) |
11 | 10 | rexlimivv 2577 | . 2 ⊢ (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → 𝐴 ∈ ℝ) |
12 | 1, 11 | sylbi 120 | 1 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1332 ∈ wcel 2125 ∃wrex 2433 class class class wbr 3961 (class class class)co 5814 ℝcr 7710 0cc0 7711 # cap 8435 / cdiv 8524 ℕcn 8812 ℤcz 9146 ℚcq 9506 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-mulrcl 7810 ax-addcom 7811 ax-mulcom 7812 ax-addass 7813 ax-mulass 7814 ax-distr 7815 ax-i2m1 7816 ax-0lt1 7817 ax-1rid 7818 ax-0id 7819 ax-rnegex 7820 ax-precex 7821 ax-cnre 7822 ax-pre-ltirr 7823 ax-pre-ltwlin 7824 ax-pre-lttrn 7825 ax-pre-apti 7826 ax-pre-ltadd 7827 ax-pre-mulgt0 7828 ax-pre-mulext 7829 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-reu 2439 df-rmo 2440 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-po 4251 df-iso 4252 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-fv 5171 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1st 6078 df-2nd 6079 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-sub 8027 df-neg 8028 df-reap 8429 df-ap 8436 df-div 8525 df-inn 8813 df-z 9147 df-q 9507 |
This theorem is referenced by: qssre 9517 qltlen 9527 qlttri2 9528 irradd 9533 irrmul 9534 qletric 10121 qlelttric 10122 qltnle 10123 qdceq 10124 qbtwnz 10129 qbtwnxr 10135 qavgle 10136 ioo0 10137 ioom 10138 ico0 10139 ioc0 10140 flqcl 10150 flqlelt 10153 qfraclt1 10157 qfracge0 10158 flqge 10159 flqltnz 10164 flqwordi 10165 flqbi 10167 flqbi2 10168 flqaddz 10174 flqmulnn0 10176 flltdivnn0lt 10181 ceilqval 10183 ceiqge 10186 ceiqm1l 10188 ceiqle 10190 flqleceil 10194 flqeqceilz 10195 intfracq 10197 flqdiv 10198 modqval 10201 modq0 10206 mulqmod0 10207 negqmod0 10208 modqge0 10209 modqlt 10210 modqelico 10211 modqdiffl 10212 modqmulnn 10219 modqid 10226 modqid0 10227 modqabs 10234 modqabs2 10235 modqcyc 10236 mulqaddmodid 10241 modqmuladdim 10244 modqmuladdnn0 10245 modqltm1p1mod 10253 q2txmodxeq0 10261 q2submod 10262 modqdi 10269 modqsubdir 10270 fimaxq 10678 qabsor 10952 qdenre 11079 expcnvre 11377 flodddiv4t2lthalf 11801 sqrt2irraplemnn 12025 sqrt2irrap 12026 qnumgt0 12044 blssps 12774 blss 12775 qtopbas 12869 logbgcd1irraplemap 13233 qdencn 13547 apdifflemf 13566 |
Copyright terms: Public domain | W3C validator |