![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > qnegcl | GIF version |
Description: Closure law for the negative of a rational. (Contributed by NM, 2-Aug-2004.) (Revised by Mario Carneiro, 15-Sep-2014.) |
Ref | Expression |
---|---|
qnegcl | ⊢ (𝐴 ∈ ℚ → -𝐴 ∈ ℚ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elq 9624 | . 2 ⊢ (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) | |
2 | zcn 9260 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
3 | 2 | adantr 276 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℂ) |
4 | nncn 8929 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
5 | 4 | adantl 277 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℂ) |
6 | nnap0 8950 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ → 𝑦 # 0) | |
7 | 6 | adantl 277 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → 𝑦 # 0) |
8 | 3, 5, 7 | divnegapd 8762 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → -(𝑥 / 𝑦) = (-𝑥 / 𝑦)) |
9 | znegcl 9286 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → -𝑥 ∈ ℤ) | |
10 | znq 9626 | . . . . . 6 ⊢ ((-𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (-𝑥 / 𝑦) ∈ ℚ) | |
11 | 9, 10 | sylan 283 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (-𝑥 / 𝑦) ∈ ℚ) |
12 | 8, 11 | eqeltrd 2254 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → -(𝑥 / 𝑦) ∈ ℚ) |
13 | negeq 8152 | . . . . 5 ⊢ (𝐴 = (𝑥 / 𝑦) → -𝐴 = -(𝑥 / 𝑦)) | |
14 | 13 | eleq1d 2246 | . . . 4 ⊢ (𝐴 = (𝑥 / 𝑦) → (-𝐴 ∈ ℚ ↔ -(𝑥 / 𝑦) ∈ ℚ)) |
15 | 12, 14 | syl5ibrcom 157 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → -𝐴 ∈ ℚ)) |
16 | 15 | rexlimivv 2600 | . 2 ⊢ (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → -𝐴 ∈ ℚ) |
17 | 1, 16 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℚ → -𝐴 ∈ ℚ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ∃wrex 2456 class class class wbr 4005 (class class class)co 5877 ℂcc 7811 0cc0 7813 -cneg 8131 # cap 8540 / cdiv 8631 ℕcn 8921 ℤcz 9255 ℚcq 9621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-pre-mulext 7931 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-po 4298 df-iso 4299 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 df-div 8632 df-inn 8922 df-z 9256 df-q 9622 |
This theorem is referenced by: qsubcl 9640 ceilqval 10308 ceiqcl 10309 ceiqge 10311 ceiqm1l 10313 negqmod0 10333 qnegmod 10371 modqsub12d 10383 qsqeqor 10633 moddvds 11808 lgsdir2lem1 14514 lgsdir2lem4 14517 lgseisenlem1 14535 ex-fl 14562 ex-ceil 14563 |
Copyright terms: Public domain | W3C validator |