ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qnegcl GIF version

Theorem qnegcl 9053
Description: Closure law for the negative of a rational. (Contributed by NM, 2-Aug-2004.) (Revised by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
qnegcl (𝐴 ∈ ℚ → -𝐴 ∈ ℚ)

Proof of Theorem qnegcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 9039 . 2 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
2 zcn 8688 . . . . . . 7 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
32adantr 270 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℂ)
4 nncn 8365 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
54adantl 271 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℂ)
6 nnap0 8386 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 # 0)
76adantl 271 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → 𝑦 # 0)
83, 5, 7divnegapd 8208 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → -(𝑥 / 𝑦) = (-𝑥 / 𝑦))
9 znegcl 8714 . . . . . 6 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
10 znq 9041 . . . . . 6 ((-𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (-𝑥 / 𝑦) ∈ ℚ)
119, 10sylan 277 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (-𝑥 / 𝑦) ∈ ℚ)
128, 11eqeltrd 2161 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → -(𝑥 / 𝑦) ∈ ℚ)
13 negeq 7619 . . . . 5 (𝐴 = (𝑥 / 𝑦) → -𝐴 = -(𝑥 / 𝑦))
1413eleq1d 2153 . . . 4 (𝐴 = (𝑥 / 𝑦) → (-𝐴 ∈ ℚ ↔ -(𝑥 / 𝑦) ∈ ℚ))
1512, 14syl5ibrcom 155 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → -𝐴 ∈ ℚ))
1615rexlimivv 2490 . 2 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → -𝐴 ∈ ℚ)
171, 16sylbi 119 1 (𝐴 ∈ ℚ → -𝐴 ∈ ℚ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1287  wcel 1436  wrex 2356   class class class wbr 3820  (class class class)co 5613  cc 7292  0cc0 7294  -cneg 7598   # cap 7999   / cdiv 8078  cn 8357  cz 8683  cq 9036
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3932  ax-pow 3984  ax-pr 4010  ax-un 4234  ax-setind 4326  ax-cnex 7380  ax-resscn 7381  ax-1cn 7382  ax-1re 7383  ax-icn 7384  ax-addcl 7385  ax-addrcl 7386  ax-mulcl 7387  ax-mulrcl 7388  ax-addcom 7389  ax-mulcom 7390  ax-addass 7391  ax-mulass 7392  ax-distr 7393  ax-i2m1 7394  ax-0lt1 7395  ax-1rid 7396  ax-0id 7397  ax-rnegex 7398  ax-precex 7399  ax-cnre 7400  ax-pre-ltirr 7401  ax-pre-ltwlin 7402  ax-pre-lttrn 7403  ax-pre-apti 7404  ax-pre-ltadd 7405  ax-pre-mulgt0 7406  ax-pre-mulext 7407
This theorem depends on definitions:  df-bi 115  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rmo 2363  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-int 3672  df-iun 3715  df-br 3821  df-opab 3875  df-mpt 3876  df-id 4094  df-po 4097  df-iso 4098  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-rn 4422  df-res 4423  df-ima 4424  df-iota 4946  df-fun 4983  df-fn 4984  df-f 4985  df-fv 4989  df-riota 5569  df-ov 5616  df-oprab 5617  df-mpt2 5618  df-1st 5868  df-2nd 5869  df-pnf 7468  df-mnf 7469  df-xr 7470  df-ltxr 7471  df-le 7472  df-sub 7599  df-neg 7600  df-reap 7993  df-ap 8000  df-div 8079  df-inn 8358  df-z 8684  df-q 9037
This theorem is referenced by:  qsubcl  9055  ceilqval  9641  ceiqcl  9642  ceiqge  9644  ceiqm1l  9646  negqmod0  9666  qnegmod  9704  modqsub12d  9716  moddvds  10680  ex-fl  11091  ex-ceil  11092
  Copyright terms: Public domain W3C validator