| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qnegcl | GIF version | ||
| Description: Closure law for the negative of a rational. (Contributed by NM, 2-Aug-2004.) (Revised by Mario Carneiro, 15-Sep-2014.) |
| Ref | Expression |
|---|---|
| qnegcl | ⊢ (𝐴 ∈ ℚ → -𝐴 ∈ ℚ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elq 9742 | . 2 ⊢ (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) | |
| 2 | zcn 9376 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
| 3 | 2 | adantr 276 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℂ) |
| 4 | nncn 9043 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
| 5 | 4 | adantl 277 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℂ) |
| 6 | nnap0 9064 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ → 𝑦 # 0) | |
| 7 | 6 | adantl 277 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → 𝑦 # 0) |
| 8 | 3, 5, 7 | divnegapd 8875 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → -(𝑥 / 𝑦) = (-𝑥 / 𝑦)) |
| 9 | znegcl 9402 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → -𝑥 ∈ ℤ) | |
| 10 | znq 9744 | . . . . . 6 ⊢ ((-𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (-𝑥 / 𝑦) ∈ ℚ) | |
| 11 | 9, 10 | sylan 283 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (-𝑥 / 𝑦) ∈ ℚ) |
| 12 | 8, 11 | eqeltrd 2281 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → -(𝑥 / 𝑦) ∈ ℚ) |
| 13 | negeq 8264 | . . . . 5 ⊢ (𝐴 = (𝑥 / 𝑦) → -𝐴 = -(𝑥 / 𝑦)) | |
| 14 | 13 | eleq1d 2273 | . . . 4 ⊢ (𝐴 = (𝑥 / 𝑦) → (-𝐴 ∈ ℚ ↔ -(𝑥 / 𝑦) ∈ ℚ)) |
| 15 | 12, 14 | syl5ibrcom 157 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → -𝐴 ∈ ℚ)) |
| 16 | 15 | rexlimivv 2628 | . 2 ⊢ (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → -𝐴 ∈ ℚ) |
| 17 | 1, 16 | sylbi 121 | 1 ⊢ (𝐴 ∈ ℚ → -𝐴 ∈ ℚ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 ∃wrex 2484 class class class wbr 4043 (class class class)co 5943 ℂcc 7922 0cc0 7924 -cneg 8243 # cap 8653 / cdiv 8744 ℕcn 9035 ℤcz 9371 ℚcq 9739 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-po 4342 df-iso 4343 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-z 9372 df-q 9740 |
| This theorem is referenced by: qsubcl 9758 ceilqval 10449 ceiqcl 10450 ceiqge 10452 ceiqm1l 10454 negqmod0 10474 qnegmod 10512 modqsub12d 10524 qsqeqor 10793 moddvds 12052 pcadd2 12606 lgsdir2lem1 15447 lgsdir2lem4 15450 lgseisenlem1 15489 ex-fl 15594 ex-ceil 15595 |
| Copyright terms: Public domain | W3C validator |