Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpqb GIF version

Theorem elpqb 9551
 Description: A class is a positive rational iff it is the quotient of two positive integers. (Contributed by AV, 30-Dec-2022.)
Assertion
Ref Expression
elpqb ((𝐴 ∈ ℚ ∧ 0 < 𝐴) ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem elpqb
StepHypRef Expression
1 elpq 9550 . 2 ((𝐴 ∈ ℚ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
2 nnz 9180 . . . . . 6 (𝑥 ∈ ℕ → 𝑥 ∈ ℤ)
3 znq 9526 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 / 𝑦) ∈ ℚ)
42, 3sylan 281 . . . . 5 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 / 𝑦) ∈ ℚ)
5 nnre 8834 . . . . . . 7 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
6 nngt0 8852 . . . . . . 7 (𝑥 ∈ ℕ → 0 < 𝑥)
75, 6jca 304 . . . . . 6 (𝑥 ∈ ℕ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
8 nnre 8834 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
9 nngt0 8852 . . . . . . 7 (𝑦 ∈ ℕ → 0 < 𝑦)
108, 9jca 304 . . . . . 6 (𝑦 ∈ ℕ → (𝑦 ∈ ℝ ∧ 0 < 𝑦))
11 divgt0 8737 . . . . . 6 (((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → 0 < (𝑥 / 𝑦))
127, 10, 11syl2an 287 . . . . 5 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → 0 < (𝑥 / 𝑦))
134, 12jca 304 . . . 4 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑥 / 𝑦) ∈ ℚ ∧ 0 < (𝑥 / 𝑦)))
14 eleq1 2220 . . . . 5 (𝐴 = (𝑥 / 𝑦) → (𝐴 ∈ ℚ ↔ (𝑥 / 𝑦) ∈ ℚ))
15 breq2 3969 . . . . 5 (𝐴 = (𝑥 / 𝑦) → (0 < 𝐴 ↔ 0 < (𝑥 / 𝑦)))
1614, 15anbi12d 465 . . . 4 (𝐴 = (𝑥 / 𝑦) → ((𝐴 ∈ ℚ ∧ 0 < 𝐴) ↔ ((𝑥 / 𝑦) ∈ ℚ ∧ 0 < (𝑥 / 𝑦))))
1713, 16syl5ibrcom 156 . . 3 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → (𝐴 ∈ ℚ ∧ 0 < 𝐴)))
1817rexlimivv 2580 . 2 (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → (𝐴 ∈ ℚ ∧ 0 < 𝐴))
191, 18impbii 125 1 ((𝐴 ∈ ℚ ∧ 0 < 𝐴) ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
 Colors of variables: wff set class Syntax hints:   ∧ wa 103   ↔ wb 104   = wceq 1335   ∈ wcel 2128  ∃wrex 2436   class class class wbr 3965  (class class class)co 5821  ℝcr 7725  0cc0 7726   < clt 7906   / cdiv 8539  ℕcn 8827  ℤcz 9161  ℚcq 9521 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-mulrcl 7825  ax-addcom 7826  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-1rid 7833  ax-0id 7834  ax-rnegex 7835  ax-precex 7836  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-apti 7841  ax-pre-ltadd 7842  ax-pre-mulgt0 7843  ax-pre-mulext 7844 This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-po 4256  df-iso 4257  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-reap 8444  df-ap 8451  df-div 8540  df-inn 8828  df-z 9162  df-q 9522 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator