ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpqb GIF version

Theorem elpqb 9648
Description: A class is a positive rational iff it is the quotient of two positive integers. (Contributed by AV, 30-Dec-2022.)
Assertion
Ref Expression
elpqb ((𝐴 ∈ ℚ ∧ 0 < 𝐴) ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem elpqb
StepHypRef Expression
1 elpq 9647 . 2 ((𝐴 ∈ ℚ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
2 nnz 9271 . . . . . 6 (𝑥 ∈ ℕ → 𝑥 ∈ ℤ)
3 znq 9623 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 / 𝑦) ∈ ℚ)
42, 3sylan 283 . . . . 5 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 / 𝑦) ∈ ℚ)
5 nnre 8925 . . . . . . 7 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
6 nngt0 8943 . . . . . . 7 (𝑥 ∈ ℕ → 0 < 𝑥)
75, 6jca 306 . . . . . 6 (𝑥 ∈ ℕ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
8 nnre 8925 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
9 nngt0 8943 . . . . . . 7 (𝑦 ∈ ℕ → 0 < 𝑦)
108, 9jca 306 . . . . . 6 (𝑦 ∈ ℕ → (𝑦 ∈ ℝ ∧ 0 < 𝑦))
11 divgt0 8828 . . . . . 6 (((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → 0 < (𝑥 / 𝑦))
127, 10, 11syl2an 289 . . . . 5 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → 0 < (𝑥 / 𝑦))
134, 12jca 306 . . . 4 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑥 / 𝑦) ∈ ℚ ∧ 0 < (𝑥 / 𝑦)))
14 eleq1 2240 . . . . 5 (𝐴 = (𝑥 / 𝑦) → (𝐴 ∈ ℚ ↔ (𝑥 / 𝑦) ∈ ℚ))
15 breq2 4007 . . . . 5 (𝐴 = (𝑥 / 𝑦) → (0 < 𝐴 ↔ 0 < (𝑥 / 𝑦)))
1614, 15anbi12d 473 . . . 4 (𝐴 = (𝑥 / 𝑦) → ((𝐴 ∈ ℚ ∧ 0 < 𝐴) ↔ ((𝑥 / 𝑦) ∈ ℚ ∧ 0 < (𝑥 / 𝑦))))
1713, 16syl5ibrcom 157 . . 3 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → (𝐴 ∈ ℚ ∧ 0 < 𝐴)))
1817rexlimivv 2600 . 2 (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → (𝐴 ∈ ℚ ∧ 0 < 𝐴))
191, 18impbii 126 1 ((𝐴 ∈ ℚ ∧ 0 < 𝐴) ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1353  wcel 2148  wrex 2456   class class class wbr 4003  (class class class)co 5874  cr 7809  0cc0 7810   < clt 7991   / cdiv 8628  cn 8918  cz 9252  cq 9618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-po 4296  df-iso 4297  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-reap 8531  df-ap 8538  df-div 8629  df-inn 8919  df-z 9253  df-q 9619
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator