Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lediv12ad | GIF version |
Description: Comparison of ratio of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
ltmul1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltmul1d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltmul1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
lediv12ad.4 | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
lediv12ad.5 | ⊢ (𝜑 → 0 ≤ 𝐴) |
lediv12ad.6 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
lediv12ad.7 | ⊢ (𝜑 → 𝐶 ≤ 𝐷) |
Ref | Expression |
---|---|
lediv12ad | ⊢ (𝜑 → (𝐴 / 𝐷) ≤ (𝐵 / 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltmul1d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltmul1d.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | 1, 2 | jca 304 | . 2 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) |
4 | lediv12ad.5 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐴) | |
5 | lediv12ad.6 | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
6 | 4, 5 | jca 304 | . 2 ⊢ (𝜑 → (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) |
7 | ltmul1d.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
8 | 7 | rpred 9632 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
9 | lediv12ad.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
10 | 8, 9 | jca 304 | . 2 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) |
11 | 7 | rpgt0d 9635 | . . 3 ⊢ (𝜑 → 0 < 𝐶) |
12 | lediv12ad.7 | . . 3 ⊢ (𝜑 → 𝐶 ≤ 𝐷) | |
13 | 11, 12 | jca 304 | . 2 ⊢ (𝜑 → (0 < 𝐶 ∧ 𝐶 ≤ 𝐷)) |
14 | lediv12a 8789 | . 2 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶 ∧ 𝐶 ≤ 𝐷))) → (𝐴 / 𝐷) ≤ (𝐵 / 𝐶)) | |
15 | 3, 6, 10, 13, 14 | syl22anc 1229 | 1 ⊢ (𝜑 → (𝐴 / 𝐷) ≤ (𝐵 / 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 class class class wbr 3982 (class class class)co 5842 ℝcr 7752 0cc0 7753 < clt 7933 ≤ cle 7934 / cdiv 8568 ℝ+crp 9589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-rp 9590 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |