ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrt2irrlem GIF version

Theorem sqrt2irrlem 10920
Description: Lemma for sqrt2irr 10921. This is the core of the proof: - if 𝐴 / 𝐵 = √(2), then 𝐴 and 𝐵 are even, so 𝐴 / 2 and 𝐵 / 2 are smaller representatives, which is absurd by the method of infinite descent (here implemented by strong induction). (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.)
Hypotheses
Ref Expression
sqrt2irrlem.1 (𝜑𝐴 ∈ ℤ)
sqrt2irrlem.2 (𝜑𝐵 ∈ ℕ)
sqrt2irrlem.3 (𝜑 → (√‘2) = (𝐴 / 𝐵))
Assertion
Ref Expression
sqrt2irrlem (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ))

Proof of Theorem sqrt2irrlem
StepHypRef Expression
1 2re 8386 . . . . . . . . . . . 12 2 ∈ ℝ
2 0le2 8406 . . . . . . . . . . . 12 0 ≤ 2
3 resqrtth 10291 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 0 ≤ 2) → ((√‘2)↑2) = 2)
41, 2, 3mp2an 417 . . . . . . . . . . 11 ((√‘2)↑2) = 2
5 sqrt2irrlem.3 . . . . . . . . . . . 12 (𝜑 → (√‘2) = (𝐴 / 𝐵))
65oveq1d 5606 . . . . . . . . . . 11 (𝜑 → ((√‘2)↑2) = ((𝐴 / 𝐵)↑2))
74, 6syl5eqr 2129 . . . . . . . . . 10 (𝜑 → 2 = ((𝐴 / 𝐵)↑2))
8 sqrt2irrlem.1 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
98zcnd 8765 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
10 sqrt2irrlem.2 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℕ)
1110nncnd 8330 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
1210nnap0d 8361 . . . . . . . . . . 11 (𝜑𝐵 # 0)
139, 11, 12sqdivapd 9934 . . . . . . . . . 10 (𝜑 → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2)))
147, 13eqtrd 2115 . . . . . . . . 9 (𝜑 → 2 = ((𝐴↑2) / (𝐵↑2)))
1514oveq1d 5606 . . . . . . . 8 (𝜑 → (2 · (𝐵↑2)) = (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2)))
169sqcld 9919 . . . . . . . . 9 (𝜑 → (𝐴↑2) ∈ ℂ)
1710nnsqcld 9942 . . . . . . . . . 10 (𝜑 → (𝐵↑2) ∈ ℕ)
1817nncnd 8330 . . . . . . . . 9 (𝜑 → (𝐵↑2) ∈ ℂ)
1917nnap0d 8361 . . . . . . . . 9 (𝜑 → (𝐵↑2) # 0)
2016, 18, 19divcanap1d 8155 . . . . . . . 8 (𝜑 → (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2)) = (𝐴↑2))
2115, 20eqtrd 2115 . . . . . . 7 (𝜑 → (2 · (𝐵↑2)) = (𝐴↑2))
2221oveq1d 5606 . . . . . 6 (𝜑 → ((2 · (𝐵↑2)) / 2) = ((𝐴↑2) / 2))
23 2cnd 8389 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
24 2ap0 8409 . . . . . . . 8 2 # 0
2524a1i 9 . . . . . . 7 (𝜑 → 2 # 0)
2618, 23, 25divcanap3d 8159 . . . . . 6 (𝜑 → ((2 · (𝐵↑2)) / 2) = (𝐵↑2))
2722, 26eqtr3d 2117 . . . . 5 (𝜑 → ((𝐴↑2) / 2) = (𝐵↑2))
2827, 17eqeltrd 2159 . . . 4 (𝜑 → ((𝐴↑2) / 2) ∈ ℕ)
2928nnzd 8763 . . 3 (𝜑 → ((𝐴↑2) / 2) ∈ ℤ)
30 zesq 9907 . . . 4 (𝐴 ∈ ℤ → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ))
318, 30syl 14 . . 3 (𝜑 → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ))
3229, 31mpbird 165 . 2 (𝜑 → (𝐴 / 2) ∈ ℤ)
33 2cn 8387 . . . . . . . . 9 2 ∈ ℂ
3433sqvali 9871 . . . . . . . 8 (2↑2) = (2 · 2)
3534oveq2i 5602 . . . . . . 7 ((𝐴↑2) / (2↑2)) = ((𝐴↑2) / (2 · 2))
369, 23, 25sqdivapd 9934 . . . . . . 7 (𝜑 → ((𝐴 / 2)↑2) = ((𝐴↑2) / (2↑2)))
3716, 23, 23, 25, 25divdivap1d 8185 . . . . . . 7 (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐴↑2) / (2 · 2)))
3835, 36, 373eqtr4a 2141 . . . . . 6 (𝜑 → ((𝐴 / 2)↑2) = (((𝐴↑2) / 2) / 2))
3927oveq1d 5606 . . . . . 6 (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐵↑2) / 2))
4038, 39eqtrd 2115 . . . . 5 (𝜑 → ((𝐴 / 2)↑2) = ((𝐵↑2) / 2))
41 zsqcl 9862 . . . . . 6 ((𝐴 / 2) ∈ ℤ → ((𝐴 / 2)↑2) ∈ ℤ)
4232, 41syl 14 . . . . 5 (𝜑 → ((𝐴 / 2)↑2) ∈ ℤ)
4340, 42eqeltrrd 2160 . . . 4 (𝜑 → ((𝐵↑2) / 2) ∈ ℤ)
4417nnrpd 9067 . . . . . 6 (𝜑 → (𝐵↑2) ∈ ℝ+)
4544rphalfcld 9081 . . . . 5 (𝜑 → ((𝐵↑2) / 2) ∈ ℝ+)
4645rpgt0d 9071 . . . 4 (𝜑 → 0 < ((𝐵↑2) / 2))
47 elnnz 8656 . . . 4 (((𝐵↑2) / 2) ∈ ℕ ↔ (((𝐵↑2) / 2) ∈ ℤ ∧ 0 < ((𝐵↑2) / 2)))
4843, 46, 47sylanbrc 408 . . 3 (𝜑 → ((𝐵↑2) / 2) ∈ ℕ)
49 nnesq 9908 . . . 4 (𝐵 ∈ ℕ → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ))
5010, 49syl 14 . . 3 (𝜑 → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ))
5148, 50mpbird 165 . 2 (𝜑 → (𝐵 / 2) ∈ ℕ)
5232, 51jca 300 1 (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1285  wcel 1434   class class class wbr 3811  cfv 4969  (class class class)co 5591  cr 7252  0cc0 7253   · cmul 7258   < clt 7425  cle 7426   # cap 7958   / cdiv 8037  cn 8316  2c2 8366  cz 8646  cexp 9791  csqrt 10256
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366  ax-cnex 7339  ax-resscn 7340  ax-1cn 7341  ax-1re 7342  ax-icn 7343  ax-addcl 7344  ax-addrcl 7345  ax-mulcl 7346  ax-mulrcl 7347  ax-addcom 7348  ax-mulcom 7349  ax-addass 7350  ax-mulass 7351  ax-distr 7352  ax-i2m1 7353  ax-0lt1 7354  ax-1rid 7355  ax-0id 7356  ax-rnegex 7357  ax-precex 7358  ax-cnre 7359  ax-pre-ltirr 7360  ax-pre-ltwlin 7361  ax-pre-lttrn 7362  ax-pre-apti 7363  ax-pre-ltadd 7364  ax-pre-mulgt0 7365  ax-pre-mulext 7366  ax-arch 7367  ax-caucvg 7368
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-if 3374  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4084  df-po 4087  df-iso 4088  df-iord 4157  df-on 4159  df-ilim 4160  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-riota 5547  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-1st 5846  df-2nd 5847  df-recs 6002  df-frec 6088  df-pnf 7427  df-mnf 7428  df-xr 7429  df-ltxr 7430  df-le 7431  df-sub 7558  df-neg 7559  df-reap 7952  df-ap 7959  df-div 8038  df-inn 8317  df-2 8375  df-3 8376  df-4 8377  df-n0 8566  df-z 8647  df-uz 8915  df-rp 9030  df-iseq 9741  df-iexp 9792  df-rsqrt 10258
This theorem is referenced by:  sqrt2irr  10921
  Copyright terms: Public domain W3C validator