ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrt2irrlem GIF version

Theorem sqrt2irrlem 12072
Description: Lemma for sqrt2irr 12073. This is the core of the proof: - if 𝐴 / 𝐵 = √(2), then 𝐴 and 𝐵 are even, so 𝐴 / 2 and 𝐵 / 2 are smaller representatives, which is absurd by the method of infinite descent (here implemented by strong induction). (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.)
Hypotheses
Ref Expression
sqrt2irrlem.1 (𝜑𝐴 ∈ ℤ)
sqrt2irrlem.2 (𝜑𝐵 ∈ ℕ)
sqrt2irrlem.3 (𝜑 → (√‘2) = (𝐴 / 𝐵))
Assertion
Ref Expression
sqrt2irrlem (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ))

Proof of Theorem sqrt2irrlem
StepHypRef Expression
1 2re 8918 . . . . . . . . . . . 12 2 ∈ ℝ
2 0le2 8938 . . . . . . . . . . . 12 0 ≤ 2
3 resqrtth 10959 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 0 ≤ 2) → ((√‘2)↑2) = 2)
41, 2, 3mp2an 423 . . . . . . . . . . 11 ((√‘2)↑2) = 2
5 sqrt2irrlem.3 . . . . . . . . . . . 12 (𝜑 → (√‘2) = (𝐴 / 𝐵))
65oveq1d 5851 . . . . . . . . . . 11 (𝜑 → ((√‘2)↑2) = ((𝐴 / 𝐵)↑2))
74, 6eqtr3id 2211 . . . . . . . . . 10 (𝜑 → 2 = ((𝐴 / 𝐵)↑2))
8 sqrt2irrlem.1 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
98zcnd 9305 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
10 sqrt2irrlem.2 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℕ)
1110nncnd 8862 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
1210nnap0d 8894 . . . . . . . . . . 11 (𝜑𝐵 # 0)
139, 11, 12sqdivapd 10590 . . . . . . . . . 10 (𝜑 → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2)))
147, 13eqtrd 2197 . . . . . . . . 9 (𝜑 → 2 = ((𝐴↑2) / (𝐵↑2)))
1514oveq1d 5851 . . . . . . . 8 (𝜑 → (2 · (𝐵↑2)) = (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2)))
169sqcld 10575 . . . . . . . . 9 (𝜑 → (𝐴↑2) ∈ ℂ)
1710nnsqcld 10598 . . . . . . . . . 10 (𝜑 → (𝐵↑2) ∈ ℕ)
1817nncnd 8862 . . . . . . . . 9 (𝜑 → (𝐵↑2) ∈ ℂ)
1917nnap0d 8894 . . . . . . . . 9 (𝜑 → (𝐵↑2) # 0)
2016, 18, 19divcanap1d 8678 . . . . . . . 8 (𝜑 → (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2)) = (𝐴↑2))
2115, 20eqtrd 2197 . . . . . . 7 (𝜑 → (2 · (𝐵↑2)) = (𝐴↑2))
2221oveq1d 5851 . . . . . 6 (𝜑 → ((2 · (𝐵↑2)) / 2) = ((𝐴↑2) / 2))
23 2cnd 8921 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
24 2ap0 8941 . . . . . . . 8 2 # 0
2524a1i 9 . . . . . . 7 (𝜑 → 2 # 0)
2618, 23, 25divcanap3d 8682 . . . . . 6 (𝜑 → ((2 · (𝐵↑2)) / 2) = (𝐵↑2))
2722, 26eqtr3d 2199 . . . . 5 (𝜑 → ((𝐴↑2) / 2) = (𝐵↑2))
2827, 17eqeltrd 2241 . . . 4 (𝜑 → ((𝐴↑2) / 2) ∈ ℕ)
2928nnzd 9303 . . 3 (𝜑 → ((𝐴↑2) / 2) ∈ ℤ)
30 zesq 10562 . . . 4 (𝐴 ∈ ℤ → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ))
318, 30syl 14 . . 3 (𝜑 → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ))
3229, 31mpbird 166 . 2 (𝜑 → (𝐴 / 2) ∈ ℤ)
33 2cn 8919 . . . . . . . . 9 2 ∈ ℂ
3433sqvali 10524 . . . . . . . 8 (2↑2) = (2 · 2)
3534oveq2i 5847 . . . . . . 7 ((𝐴↑2) / (2↑2)) = ((𝐴↑2) / (2 · 2))
369, 23, 25sqdivapd 10590 . . . . . . 7 (𝜑 → ((𝐴 / 2)↑2) = ((𝐴↑2) / (2↑2)))
3716, 23, 23, 25, 25divdivap1d 8709 . . . . . . 7 (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐴↑2) / (2 · 2)))
3835, 36, 373eqtr4a 2223 . . . . . 6 (𝜑 → ((𝐴 / 2)↑2) = (((𝐴↑2) / 2) / 2))
3927oveq1d 5851 . . . . . 6 (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐵↑2) / 2))
4038, 39eqtrd 2197 . . . . 5 (𝜑 → ((𝐴 / 2)↑2) = ((𝐵↑2) / 2))
41 zsqcl 10515 . . . . . 6 ((𝐴 / 2) ∈ ℤ → ((𝐴 / 2)↑2) ∈ ℤ)
4232, 41syl 14 . . . . 5 (𝜑 → ((𝐴 / 2)↑2) ∈ ℤ)
4340, 42eqeltrrd 2242 . . . 4 (𝜑 → ((𝐵↑2) / 2) ∈ ℤ)
4417nnrpd 9621 . . . . . 6 (𝜑 → (𝐵↑2) ∈ ℝ+)
4544rphalfcld 9636 . . . . 5 (𝜑 → ((𝐵↑2) / 2) ∈ ℝ+)
4645rpgt0d 9626 . . . 4 (𝜑 → 0 < ((𝐵↑2) / 2))
47 elnnz 9192 . . . 4 (((𝐵↑2) / 2) ∈ ℕ ↔ (((𝐵↑2) / 2) ∈ ℤ ∧ 0 < ((𝐵↑2) / 2)))
4843, 46, 47sylanbrc 414 . . 3 (𝜑 → ((𝐵↑2) / 2) ∈ ℕ)
49 nnesq 10563 . . . 4 (𝐵 ∈ ℕ → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ))
5010, 49syl 14 . . 3 (𝜑 → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ))
5148, 50mpbird 166 . 2 (𝜑 → (𝐵 / 2) ∈ ℕ)
5232, 51jca 304 1 (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1342  wcel 2135   class class class wbr 3976  cfv 5182  (class class class)co 5836  cr 7743  0cc0 7744   · cmul 7749   < clt 7924  cle 7925   # cap 8470   / cdiv 8559  cn 8848  2c2 8899  cz 9182  cexp 10444  csqrt 10924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863  ax-caucvg 7864
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-3 8908  df-4 8909  df-n0 9106  df-z 9183  df-uz 9458  df-rp 9581  df-seqfrec 10371  df-exp 10445  df-rsqrt 10926
This theorem is referenced by:  sqrt2irr  12073
  Copyright terms: Public domain W3C validator