![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sqrt2irrlem | GIF version |
Description: Lemma for sqrt2irr 12300. This is the core of the proof: - if 𝐴 / 𝐵 = √(2), then 𝐴 and 𝐵 are even, so 𝐴 / 2 and 𝐵 / 2 are smaller representatives, which is absurd by the method of infinite descent (here implemented by strong induction). (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.) |
Ref | Expression |
---|---|
sqrt2irrlem.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
sqrt2irrlem.2 | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
sqrt2irrlem.3 | ⊢ (𝜑 → (√‘2) = (𝐴 / 𝐵)) |
Ref | Expression |
---|---|
sqrt2irrlem | ⊢ (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 9052 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℝ | |
2 | 0le2 9072 | . . . . . . . . . . . 12 ⊢ 0 ≤ 2 | |
3 | resqrtth 11175 | . . . . . . . . . . . 12 ⊢ ((2 ∈ ℝ ∧ 0 ≤ 2) → ((√‘2)↑2) = 2) | |
4 | 1, 2, 3 | mp2an 426 | . . . . . . . . . . 11 ⊢ ((√‘2)↑2) = 2 |
5 | sqrt2irrlem.3 | . . . . . . . . . . . 12 ⊢ (𝜑 → (√‘2) = (𝐴 / 𝐵)) | |
6 | 5 | oveq1d 5933 | . . . . . . . . . . 11 ⊢ (𝜑 → ((√‘2)↑2) = ((𝐴 / 𝐵)↑2)) |
7 | 4, 6 | eqtr3id 2240 | . . . . . . . . . 10 ⊢ (𝜑 → 2 = ((𝐴 / 𝐵)↑2)) |
8 | sqrt2irrlem.1 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
9 | 8 | zcnd 9440 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
10 | sqrt2irrlem.2 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
11 | 10 | nncnd 8996 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
12 | 10 | nnap0d 9028 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 # 0) |
13 | 9, 11, 12 | sqdivapd 10757 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2))) |
14 | 7, 13 | eqtrd 2226 | . . . . . . . . 9 ⊢ (𝜑 → 2 = ((𝐴↑2) / (𝐵↑2))) |
15 | 14 | oveq1d 5933 | . . . . . . . 8 ⊢ (𝜑 → (2 · (𝐵↑2)) = (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2))) |
16 | 9 | sqcld 10742 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴↑2) ∈ ℂ) |
17 | 10 | nnsqcld 10765 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐵↑2) ∈ ℕ) |
18 | 17 | nncnd 8996 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵↑2) ∈ ℂ) |
19 | 17 | nnap0d 9028 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵↑2) # 0) |
20 | 16, 18, 19 | divcanap1d 8810 | . . . . . . . 8 ⊢ (𝜑 → (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2)) = (𝐴↑2)) |
21 | 15, 20 | eqtrd 2226 | . . . . . . 7 ⊢ (𝜑 → (2 · (𝐵↑2)) = (𝐴↑2)) |
22 | 21 | oveq1d 5933 | . . . . . 6 ⊢ (𝜑 → ((2 · (𝐵↑2)) / 2) = ((𝐴↑2) / 2)) |
23 | 2cnd 9055 | . . . . . . 7 ⊢ (𝜑 → 2 ∈ ℂ) | |
24 | 2ap0 9075 | . . . . . . . 8 ⊢ 2 # 0 | |
25 | 24 | a1i 9 | . . . . . . 7 ⊢ (𝜑 → 2 # 0) |
26 | 18, 23, 25 | divcanap3d 8814 | . . . . . 6 ⊢ (𝜑 → ((2 · (𝐵↑2)) / 2) = (𝐵↑2)) |
27 | 22, 26 | eqtr3d 2228 | . . . . 5 ⊢ (𝜑 → ((𝐴↑2) / 2) = (𝐵↑2)) |
28 | 27, 17 | eqeltrd 2270 | . . . 4 ⊢ (𝜑 → ((𝐴↑2) / 2) ∈ ℕ) |
29 | 28 | nnzd 9438 | . . 3 ⊢ (𝜑 → ((𝐴↑2) / 2) ∈ ℤ) |
30 | zesq 10729 | . . . 4 ⊢ (𝐴 ∈ ℤ → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ)) | |
31 | 8, 30 | syl 14 | . . 3 ⊢ (𝜑 → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ)) |
32 | 29, 31 | mpbird 167 | . 2 ⊢ (𝜑 → (𝐴 / 2) ∈ ℤ) |
33 | 2cn 9053 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
34 | 33 | sqvali 10690 | . . . . . . . 8 ⊢ (2↑2) = (2 · 2) |
35 | 34 | oveq2i 5929 | . . . . . . 7 ⊢ ((𝐴↑2) / (2↑2)) = ((𝐴↑2) / (2 · 2)) |
36 | 9, 23, 25 | sqdivapd 10757 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 / 2)↑2) = ((𝐴↑2) / (2↑2))) |
37 | 16, 23, 23, 25, 25 | divdivap1d 8841 | . . . . . . 7 ⊢ (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐴↑2) / (2 · 2))) |
38 | 35, 36, 37 | 3eqtr4a 2252 | . . . . . 6 ⊢ (𝜑 → ((𝐴 / 2)↑2) = (((𝐴↑2) / 2) / 2)) |
39 | 27 | oveq1d 5933 | . . . . . 6 ⊢ (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐵↑2) / 2)) |
40 | 38, 39 | eqtrd 2226 | . . . . 5 ⊢ (𝜑 → ((𝐴 / 2)↑2) = ((𝐵↑2) / 2)) |
41 | zsqcl 10681 | . . . . . 6 ⊢ ((𝐴 / 2) ∈ ℤ → ((𝐴 / 2)↑2) ∈ ℤ) | |
42 | 32, 41 | syl 14 | . . . . 5 ⊢ (𝜑 → ((𝐴 / 2)↑2) ∈ ℤ) |
43 | 40, 42 | eqeltrrd 2271 | . . . 4 ⊢ (𝜑 → ((𝐵↑2) / 2) ∈ ℤ) |
44 | 17 | nnrpd 9760 | . . . . . 6 ⊢ (𝜑 → (𝐵↑2) ∈ ℝ+) |
45 | 44 | rphalfcld 9775 | . . . . 5 ⊢ (𝜑 → ((𝐵↑2) / 2) ∈ ℝ+) |
46 | 45 | rpgt0d 9765 | . . . 4 ⊢ (𝜑 → 0 < ((𝐵↑2) / 2)) |
47 | elnnz 9327 | . . . 4 ⊢ (((𝐵↑2) / 2) ∈ ℕ ↔ (((𝐵↑2) / 2) ∈ ℤ ∧ 0 < ((𝐵↑2) / 2))) | |
48 | 43, 46, 47 | sylanbrc 417 | . . 3 ⊢ (𝜑 → ((𝐵↑2) / 2) ∈ ℕ) |
49 | nnesq 10730 | . . . 4 ⊢ (𝐵 ∈ ℕ → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ)) | |
50 | 10, 49 | syl 14 | . . 3 ⊢ (𝜑 → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ)) |
51 | 48, 50 | mpbird 167 | . 2 ⊢ (𝜑 → (𝐵 / 2) ∈ ℕ) |
52 | 32, 51 | jca 306 | 1 ⊢ (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 ‘cfv 5254 (class class class)co 5918 ℝcr 7871 0cc0 7872 · cmul 7877 < clt 8054 ≤ cle 8055 # cap 8600 / cdiv 8691 ℕcn 8982 2c2 9033 ℤcz 9317 ↑cexp 10609 √csqrt 11140 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-n0 9241 df-z 9318 df-uz 9593 df-rp 9720 df-seqfrec 10519 df-exp 10610 df-rsqrt 11142 |
This theorem is referenced by: sqrt2irr 12300 |
Copyright terms: Public domain | W3C validator |