ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrt2irrlem GIF version

Theorem sqrt2irrlem 11632
Description: Lemma for sqrt2irr 11633. This is the core of the proof: - if 𝐴 / 𝐵 = √(2), then 𝐴 and 𝐵 are even, so 𝐴 / 2 and 𝐵 / 2 are smaller representatives, which is absurd by the method of infinite descent (here implemented by strong induction). (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.)
Hypotheses
Ref Expression
sqrt2irrlem.1 (𝜑𝐴 ∈ ℤ)
sqrt2irrlem.2 (𝜑𝐵 ∈ ℕ)
sqrt2irrlem.3 (𝜑 → (√‘2) = (𝐴 / 𝐵))
Assertion
Ref Expression
sqrt2irrlem (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ))

Proof of Theorem sqrt2irrlem
StepHypRef Expression
1 2re 8648 . . . . . . . . . . . 12 2 ∈ ℝ
2 0le2 8668 . . . . . . . . . . . 12 0 ≤ 2
3 resqrtth 10643 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 0 ≤ 2) → ((√‘2)↑2) = 2)
41, 2, 3mp2an 420 . . . . . . . . . . 11 ((√‘2)↑2) = 2
5 sqrt2irrlem.3 . . . . . . . . . . . 12 (𝜑 → (√‘2) = (𝐴 / 𝐵))
65oveq1d 5721 . . . . . . . . . . 11 (𝜑 → ((√‘2)↑2) = ((𝐴 / 𝐵)↑2))
74, 6syl5eqr 2146 . . . . . . . . . 10 (𝜑 → 2 = ((𝐴 / 𝐵)↑2))
8 sqrt2irrlem.1 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
98zcnd 9026 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
10 sqrt2irrlem.2 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℕ)
1110nncnd 8592 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
1210nnap0d 8624 . . . . . . . . . . 11 (𝜑𝐵 # 0)
139, 11, 12sqdivapd 10278 . . . . . . . . . 10 (𝜑 → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2)))
147, 13eqtrd 2132 . . . . . . . . 9 (𝜑 → 2 = ((𝐴↑2) / (𝐵↑2)))
1514oveq1d 5721 . . . . . . . 8 (𝜑 → (2 · (𝐵↑2)) = (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2)))
169sqcld 10263 . . . . . . . . 9 (𝜑 → (𝐴↑2) ∈ ℂ)
1710nnsqcld 10286 . . . . . . . . . 10 (𝜑 → (𝐵↑2) ∈ ℕ)
1817nncnd 8592 . . . . . . . . 9 (𝜑 → (𝐵↑2) ∈ ℂ)
1917nnap0d 8624 . . . . . . . . 9 (𝜑 → (𝐵↑2) # 0)
2016, 18, 19divcanap1d 8412 . . . . . . . 8 (𝜑 → (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2)) = (𝐴↑2))
2115, 20eqtrd 2132 . . . . . . 7 (𝜑 → (2 · (𝐵↑2)) = (𝐴↑2))
2221oveq1d 5721 . . . . . 6 (𝜑 → ((2 · (𝐵↑2)) / 2) = ((𝐴↑2) / 2))
23 2cnd 8651 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
24 2ap0 8671 . . . . . . . 8 2 # 0
2524a1i 9 . . . . . . 7 (𝜑 → 2 # 0)
2618, 23, 25divcanap3d 8416 . . . . . 6 (𝜑 → ((2 · (𝐵↑2)) / 2) = (𝐵↑2))
2722, 26eqtr3d 2134 . . . . 5 (𝜑 → ((𝐴↑2) / 2) = (𝐵↑2))
2827, 17eqeltrd 2176 . . . 4 (𝜑 → ((𝐴↑2) / 2) ∈ ℕ)
2928nnzd 9024 . . 3 (𝜑 → ((𝐴↑2) / 2) ∈ ℤ)
30 zesq 10251 . . . 4 (𝐴 ∈ ℤ → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ))
318, 30syl 14 . . 3 (𝜑 → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ))
3229, 31mpbird 166 . 2 (𝜑 → (𝐴 / 2) ∈ ℤ)
33 2cn 8649 . . . . . . . . 9 2 ∈ ℂ
3433sqvali 10213 . . . . . . . 8 (2↑2) = (2 · 2)
3534oveq2i 5717 . . . . . . 7 ((𝐴↑2) / (2↑2)) = ((𝐴↑2) / (2 · 2))
369, 23, 25sqdivapd 10278 . . . . . . 7 (𝜑 → ((𝐴 / 2)↑2) = ((𝐴↑2) / (2↑2)))
3716, 23, 23, 25, 25divdivap1d 8443 . . . . . . 7 (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐴↑2) / (2 · 2)))
3835, 36, 373eqtr4a 2158 . . . . . 6 (𝜑 → ((𝐴 / 2)↑2) = (((𝐴↑2) / 2) / 2))
3927oveq1d 5721 . . . . . 6 (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐵↑2) / 2))
4038, 39eqtrd 2132 . . . . 5 (𝜑 → ((𝐴 / 2)↑2) = ((𝐵↑2) / 2))
41 zsqcl 10204 . . . . . 6 ((𝐴 / 2) ∈ ℤ → ((𝐴 / 2)↑2) ∈ ℤ)
4232, 41syl 14 . . . . 5 (𝜑 → ((𝐴 / 2)↑2) ∈ ℤ)
4340, 42eqeltrrd 2177 . . . 4 (𝜑 → ((𝐵↑2) / 2) ∈ ℤ)
4417nnrpd 9329 . . . . . 6 (𝜑 → (𝐵↑2) ∈ ℝ+)
4544rphalfcld 9343 . . . . 5 (𝜑 → ((𝐵↑2) / 2) ∈ ℝ+)
4645rpgt0d 9333 . . . 4 (𝜑 → 0 < ((𝐵↑2) / 2))
47 elnnz 8916 . . . 4 (((𝐵↑2) / 2) ∈ ℕ ↔ (((𝐵↑2) / 2) ∈ ℤ ∧ 0 < ((𝐵↑2) / 2)))
4843, 46, 47sylanbrc 411 . . 3 (𝜑 → ((𝐵↑2) / 2) ∈ ℕ)
49 nnesq 10252 . . . 4 (𝐵 ∈ ℕ → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ))
5010, 49syl 14 . . 3 (𝜑 → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ))
5148, 50mpbird 166 . 2 (𝜑 → (𝐵 / 2) ∈ ℕ)
5232, 51jca 302 1 (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1299  wcel 1448   class class class wbr 3875  cfv 5059  (class class class)co 5706  cr 7499  0cc0 7500   · cmul 7505   < clt 7672  cle 7673   # cap 8209   / cdiv 8293  cn 8578  2c2 8629  cz 8906  cexp 10133  csqrt 10608
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613  ax-arch 7614  ax-caucvg 7615
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-frec 6218  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-2 8637  df-3 8638  df-4 8639  df-n0 8830  df-z 8907  df-uz 9177  df-rp 9292  df-seqfrec 10060  df-exp 10134  df-rsqrt 10610
This theorem is referenced by:  sqrt2irr  11633
  Copyright terms: Public domain W3C validator