![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sqrt2irrlem | GIF version |
Description: Lemma for sqrt2irr 11633. This is the core of the proof: - if 𝐴 / 𝐵 = √(2), then 𝐴 and 𝐵 are even, so 𝐴 / 2 and 𝐵 / 2 are smaller representatives, which is absurd by the method of infinite descent (here implemented by strong induction). (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.) |
Ref | Expression |
---|---|
sqrt2irrlem.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
sqrt2irrlem.2 | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
sqrt2irrlem.3 | ⊢ (𝜑 → (√‘2) = (𝐴 / 𝐵)) |
Ref | Expression |
---|---|
sqrt2irrlem | ⊢ (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 8648 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℝ | |
2 | 0le2 8668 | . . . . . . . . . . . 12 ⊢ 0 ≤ 2 | |
3 | resqrtth 10643 | . . . . . . . . . . . 12 ⊢ ((2 ∈ ℝ ∧ 0 ≤ 2) → ((√‘2)↑2) = 2) | |
4 | 1, 2, 3 | mp2an 420 | . . . . . . . . . . 11 ⊢ ((√‘2)↑2) = 2 |
5 | sqrt2irrlem.3 | . . . . . . . . . . . 12 ⊢ (𝜑 → (√‘2) = (𝐴 / 𝐵)) | |
6 | 5 | oveq1d 5721 | . . . . . . . . . . 11 ⊢ (𝜑 → ((√‘2)↑2) = ((𝐴 / 𝐵)↑2)) |
7 | 4, 6 | syl5eqr 2146 | . . . . . . . . . 10 ⊢ (𝜑 → 2 = ((𝐴 / 𝐵)↑2)) |
8 | sqrt2irrlem.1 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
9 | 8 | zcnd 9026 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
10 | sqrt2irrlem.2 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
11 | 10 | nncnd 8592 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
12 | 10 | nnap0d 8624 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 # 0) |
13 | 9, 11, 12 | sqdivapd 10278 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2))) |
14 | 7, 13 | eqtrd 2132 | . . . . . . . . 9 ⊢ (𝜑 → 2 = ((𝐴↑2) / (𝐵↑2))) |
15 | 14 | oveq1d 5721 | . . . . . . . 8 ⊢ (𝜑 → (2 · (𝐵↑2)) = (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2))) |
16 | 9 | sqcld 10263 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴↑2) ∈ ℂ) |
17 | 10 | nnsqcld 10286 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐵↑2) ∈ ℕ) |
18 | 17 | nncnd 8592 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵↑2) ∈ ℂ) |
19 | 17 | nnap0d 8624 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵↑2) # 0) |
20 | 16, 18, 19 | divcanap1d 8412 | . . . . . . . 8 ⊢ (𝜑 → (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2)) = (𝐴↑2)) |
21 | 15, 20 | eqtrd 2132 | . . . . . . 7 ⊢ (𝜑 → (2 · (𝐵↑2)) = (𝐴↑2)) |
22 | 21 | oveq1d 5721 | . . . . . 6 ⊢ (𝜑 → ((2 · (𝐵↑2)) / 2) = ((𝐴↑2) / 2)) |
23 | 2cnd 8651 | . . . . . . 7 ⊢ (𝜑 → 2 ∈ ℂ) | |
24 | 2ap0 8671 | . . . . . . . 8 ⊢ 2 # 0 | |
25 | 24 | a1i 9 | . . . . . . 7 ⊢ (𝜑 → 2 # 0) |
26 | 18, 23, 25 | divcanap3d 8416 | . . . . . 6 ⊢ (𝜑 → ((2 · (𝐵↑2)) / 2) = (𝐵↑2)) |
27 | 22, 26 | eqtr3d 2134 | . . . . 5 ⊢ (𝜑 → ((𝐴↑2) / 2) = (𝐵↑2)) |
28 | 27, 17 | eqeltrd 2176 | . . . 4 ⊢ (𝜑 → ((𝐴↑2) / 2) ∈ ℕ) |
29 | 28 | nnzd 9024 | . . 3 ⊢ (𝜑 → ((𝐴↑2) / 2) ∈ ℤ) |
30 | zesq 10251 | . . . 4 ⊢ (𝐴 ∈ ℤ → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ)) | |
31 | 8, 30 | syl 14 | . . 3 ⊢ (𝜑 → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ)) |
32 | 29, 31 | mpbird 166 | . 2 ⊢ (𝜑 → (𝐴 / 2) ∈ ℤ) |
33 | 2cn 8649 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
34 | 33 | sqvali 10213 | . . . . . . . 8 ⊢ (2↑2) = (2 · 2) |
35 | 34 | oveq2i 5717 | . . . . . . 7 ⊢ ((𝐴↑2) / (2↑2)) = ((𝐴↑2) / (2 · 2)) |
36 | 9, 23, 25 | sqdivapd 10278 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 / 2)↑2) = ((𝐴↑2) / (2↑2))) |
37 | 16, 23, 23, 25, 25 | divdivap1d 8443 | . . . . . . 7 ⊢ (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐴↑2) / (2 · 2))) |
38 | 35, 36, 37 | 3eqtr4a 2158 | . . . . . 6 ⊢ (𝜑 → ((𝐴 / 2)↑2) = (((𝐴↑2) / 2) / 2)) |
39 | 27 | oveq1d 5721 | . . . . . 6 ⊢ (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐵↑2) / 2)) |
40 | 38, 39 | eqtrd 2132 | . . . . 5 ⊢ (𝜑 → ((𝐴 / 2)↑2) = ((𝐵↑2) / 2)) |
41 | zsqcl 10204 | . . . . . 6 ⊢ ((𝐴 / 2) ∈ ℤ → ((𝐴 / 2)↑2) ∈ ℤ) | |
42 | 32, 41 | syl 14 | . . . . 5 ⊢ (𝜑 → ((𝐴 / 2)↑2) ∈ ℤ) |
43 | 40, 42 | eqeltrrd 2177 | . . . 4 ⊢ (𝜑 → ((𝐵↑2) / 2) ∈ ℤ) |
44 | 17 | nnrpd 9329 | . . . . . 6 ⊢ (𝜑 → (𝐵↑2) ∈ ℝ+) |
45 | 44 | rphalfcld 9343 | . . . . 5 ⊢ (𝜑 → ((𝐵↑2) / 2) ∈ ℝ+) |
46 | 45 | rpgt0d 9333 | . . . 4 ⊢ (𝜑 → 0 < ((𝐵↑2) / 2)) |
47 | elnnz 8916 | . . . 4 ⊢ (((𝐵↑2) / 2) ∈ ℕ ↔ (((𝐵↑2) / 2) ∈ ℤ ∧ 0 < ((𝐵↑2) / 2))) | |
48 | 43, 46, 47 | sylanbrc 411 | . . 3 ⊢ (𝜑 → ((𝐵↑2) / 2) ∈ ℕ) |
49 | nnesq 10252 | . . . 4 ⊢ (𝐵 ∈ ℕ → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ)) | |
50 | 10, 49 | syl 14 | . . 3 ⊢ (𝜑 → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ)) |
51 | 48, 50 | mpbird 166 | . 2 ⊢ (𝜑 → (𝐵 / 2) ∈ ℕ) |
52 | 32, 51 | jca 302 | 1 ⊢ (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1299 ∈ wcel 1448 class class class wbr 3875 ‘cfv 5059 (class class class)co 5706 ℝcr 7499 0cc0 7500 · cmul 7505 < clt 7672 ≤ cle 7673 # cap 8209 / cdiv 8293 ℕcn 8578 2c2 8629 ℤcz 8906 ↑cexp 10133 √csqrt 10608 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-coll 3983 ax-sep 3986 ax-nul 3994 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-iinf 4440 ax-cnex 7586 ax-resscn 7587 ax-1cn 7588 ax-1re 7589 ax-icn 7590 ax-addcl 7591 ax-addrcl 7592 ax-mulcl 7593 ax-mulrcl 7594 ax-addcom 7595 ax-mulcom 7596 ax-addass 7597 ax-mulass 7598 ax-distr 7599 ax-i2m1 7600 ax-0lt1 7601 ax-1rid 7602 ax-0id 7603 ax-rnegex 7604 ax-precex 7605 ax-cnre 7606 ax-pre-ltirr 7607 ax-pre-ltwlin 7608 ax-pre-lttrn 7609 ax-pre-apti 7610 ax-pre-ltadd 7611 ax-pre-mulgt0 7612 ax-pre-mulext 7613 ax-arch 7614 ax-caucvg 7615 |
This theorem depends on definitions: df-bi 116 df-dc 787 df-3or 931 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-reu 2382 df-rmo 2383 df-rab 2384 df-v 2643 df-sbc 2863 df-csb 2956 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-nul 3311 df-if 3422 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-iun 3762 df-br 3876 df-opab 3930 df-mpt 3931 df-tr 3967 df-id 4153 df-po 4156 df-iso 4157 df-iord 4226 df-on 4228 df-ilim 4229 df-suc 4231 df-iom 4443 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-iota 5024 df-fun 5061 df-fn 5062 df-f 5063 df-f1 5064 df-fo 5065 df-f1o 5066 df-fv 5067 df-riota 5662 df-ov 5709 df-oprab 5710 df-mpo 5711 df-1st 5969 df-2nd 5970 df-recs 6132 df-frec 6218 df-pnf 7674 df-mnf 7675 df-xr 7676 df-ltxr 7677 df-le 7678 df-sub 7806 df-neg 7807 df-reap 8203 df-ap 8210 df-div 8294 df-inn 8579 df-2 8637 df-3 8638 df-4 8639 df-n0 8830 df-z 8907 df-uz 9177 df-rp 9292 df-seqfrec 10060 df-exp 10134 df-rsqrt 10610 |
This theorem is referenced by: sqrt2irr 11633 |
Copyright terms: Public domain | W3C validator |