Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrt2irrlem GIF version

Theorem sqrt2irrlem 11873
 Description: Lemma for sqrt2irr 11874. This is the core of the proof: - if 𝐴 / 𝐵 = √(2), then 𝐴 and 𝐵 are even, so 𝐴 / 2 and 𝐵 / 2 are smaller representatives, which is absurd by the method of infinite descent (here implemented by strong induction). (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.)
Hypotheses
Ref Expression
sqrt2irrlem.1 (𝜑𝐴 ∈ ℤ)
sqrt2irrlem.2 (𝜑𝐵 ∈ ℕ)
sqrt2irrlem.3 (𝜑 → (√‘2) = (𝐴 / 𝐵))
Assertion
Ref Expression
sqrt2irrlem (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ))

Proof of Theorem sqrt2irrlem
StepHypRef Expression
1 2re 8813 . . . . . . . . . . . 12 2 ∈ ℝ
2 0le2 8833 . . . . . . . . . . . 12 0 ≤ 2
3 resqrtth 10834 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 0 ≤ 2) → ((√‘2)↑2) = 2)
41, 2, 3mp2an 423 . . . . . . . . . . 11 ((√‘2)↑2) = 2
5 sqrt2irrlem.3 . . . . . . . . . . . 12 (𝜑 → (√‘2) = (𝐴 / 𝐵))
65oveq1d 5796 . . . . . . . . . . 11 (𝜑 → ((√‘2)↑2) = ((𝐴 / 𝐵)↑2))
74, 6syl5eqr 2187 . . . . . . . . . 10 (𝜑 → 2 = ((𝐴 / 𝐵)↑2))
8 sqrt2irrlem.1 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
98zcnd 9197 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
10 sqrt2irrlem.2 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℕ)
1110nncnd 8757 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
1210nnap0d 8789 . . . . . . . . . . 11 (𝜑𝐵 # 0)
139, 11, 12sqdivapd 10467 . . . . . . . . . 10 (𝜑 → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2)))
147, 13eqtrd 2173 . . . . . . . . 9 (𝜑 → 2 = ((𝐴↑2) / (𝐵↑2)))
1514oveq1d 5796 . . . . . . . 8 (𝜑 → (2 · (𝐵↑2)) = (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2)))
169sqcld 10452 . . . . . . . . 9 (𝜑 → (𝐴↑2) ∈ ℂ)
1710nnsqcld 10475 . . . . . . . . . 10 (𝜑 → (𝐵↑2) ∈ ℕ)
1817nncnd 8757 . . . . . . . . 9 (𝜑 → (𝐵↑2) ∈ ℂ)
1917nnap0d 8789 . . . . . . . . 9 (𝜑 → (𝐵↑2) # 0)
2016, 18, 19divcanap1d 8574 . . . . . . . 8 (𝜑 → (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2)) = (𝐴↑2))
2115, 20eqtrd 2173 . . . . . . 7 (𝜑 → (2 · (𝐵↑2)) = (𝐴↑2))
2221oveq1d 5796 . . . . . 6 (𝜑 → ((2 · (𝐵↑2)) / 2) = ((𝐴↑2) / 2))
23 2cnd 8816 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
24 2ap0 8836 . . . . . . . 8 2 # 0
2524a1i 9 . . . . . . 7 (𝜑 → 2 # 0)
2618, 23, 25divcanap3d 8578 . . . . . 6 (𝜑 → ((2 · (𝐵↑2)) / 2) = (𝐵↑2))
2722, 26eqtr3d 2175 . . . . 5 (𝜑 → ((𝐴↑2) / 2) = (𝐵↑2))
2827, 17eqeltrd 2217 . . . 4 (𝜑 → ((𝐴↑2) / 2) ∈ ℕ)
2928nnzd 9195 . . 3 (𝜑 → ((𝐴↑2) / 2) ∈ ℤ)
30 zesq 10440 . . . 4 (𝐴 ∈ ℤ → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ))
318, 30syl 14 . . 3 (𝜑 → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ))
3229, 31mpbird 166 . 2 (𝜑 → (𝐴 / 2) ∈ ℤ)
33 2cn 8814 . . . . . . . . 9 2 ∈ ℂ
3433sqvali 10402 . . . . . . . 8 (2↑2) = (2 · 2)
3534oveq2i 5792 . . . . . . 7 ((𝐴↑2) / (2↑2)) = ((𝐴↑2) / (2 · 2))
369, 23, 25sqdivapd 10467 . . . . . . 7 (𝜑 → ((𝐴 / 2)↑2) = ((𝐴↑2) / (2↑2)))
3716, 23, 23, 25, 25divdivap1d 8605 . . . . . . 7 (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐴↑2) / (2 · 2)))
3835, 36, 373eqtr4a 2199 . . . . . 6 (𝜑 → ((𝐴 / 2)↑2) = (((𝐴↑2) / 2) / 2))
3927oveq1d 5796 . . . . . 6 (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐵↑2) / 2))
4038, 39eqtrd 2173 . . . . 5 (𝜑 → ((𝐴 / 2)↑2) = ((𝐵↑2) / 2))
41 zsqcl 10393 . . . . . 6 ((𝐴 / 2) ∈ ℤ → ((𝐴 / 2)↑2) ∈ ℤ)
4232, 41syl 14 . . . . 5 (𝜑 → ((𝐴 / 2)↑2) ∈ ℤ)
4340, 42eqeltrrd 2218 . . . 4 (𝜑 → ((𝐵↑2) / 2) ∈ ℤ)
4417nnrpd 9510 . . . . . 6 (𝜑 → (𝐵↑2) ∈ ℝ+)
4544rphalfcld 9525 . . . . 5 (𝜑 → ((𝐵↑2) / 2) ∈ ℝ+)
4645rpgt0d 9515 . . . 4 (𝜑 → 0 < ((𝐵↑2) / 2))
47 elnnz 9087 . . . 4 (((𝐵↑2) / 2) ∈ ℕ ↔ (((𝐵↑2) / 2) ∈ ℤ ∧ 0 < ((𝐵↑2) / 2)))
4843, 46, 47sylanbrc 414 . . 3 (𝜑 → ((𝐵↑2) / 2) ∈ ℕ)
49 nnesq 10441 . . . 4 (𝐵 ∈ ℕ → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ))
5010, 49syl 14 . . 3 (𝜑 → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ))
5148, 50mpbird 166 . 2 (𝜑 → (𝐵 / 2) ∈ ℕ)
5232, 51jca 304 1 (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1332   ∈ wcel 1481   class class class wbr 3936  ‘cfv 5130  (class class class)co 5781  ℝcr 7642  0cc0 7643   · cmul 7648   < clt 7823   ≤ cle 7824   # cap 8366   / cdiv 8455  ℕcn 8743  2c2 8794  ℤcz 9077  ↑cexp 10322  √csqrt 10799 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4050  ax-sep 4053  ax-nul 4061  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-iinf 4509  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-mulrcl 7742  ax-addcom 7743  ax-mulcom 7744  ax-addass 7745  ax-mulass 7746  ax-distr 7747  ax-i2m1 7748  ax-0lt1 7749  ax-1rid 7750  ax-0id 7751  ax-rnegex 7752  ax-precex 7753  ax-cnre 7754  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757  ax-pre-apti 7758  ax-pre-ltadd 7759  ax-pre-mulgt0 7760  ax-pre-mulext 7761  ax-arch 7762  ax-caucvg 7763 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-if 3479  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-tr 4034  df-id 4222  df-po 4225  df-iso 4226  df-iord 4295  df-on 4297  df-ilim 4298  df-suc 4300  df-iom 4512  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-recs 6209  df-frec 6295  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-sub 7958  df-neg 7959  df-reap 8360  df-ap 8367  df-div 8456  df-inn 8744  df-2 8802  df-3 8803  df-4 8804  df-n0 9001  df-z 9078  df-uz 9350  df-rp 9470  df-seqfrec 10249  df-exp 10323  df-rsqrt 10801 This theorem is referenced by:  sqrt2irr  11874
 Copyright terms: Public domain W3C validator