![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sqrt2irrlem | GIF version |
Description: Lemma for sqrt2irr 12145. This is the core of the proof: - if 𝐴 / 𝐵 = √(2), then 𝐴 and 𝐵 are even, so 𝐴 / 2 and 𝐵 / 2 are smaller representatives, which is absurd by the method of infinite descent (here implemented by strong induction). (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.) |
Ref | Expression |
---|---|
sqrt2irrlem.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
sqrt2irrlem.2 | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
sqrt2irrlem.3 | ⊢ (𝜑 → (√‘2) = (𝐴 / 𝐵)) |
Ref | Expression |
---|---|
sqrt2irrlem | ⊢ (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 8978 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℝ | |
2 | 0le2 8998 | . . . . . . . . . . . 12 ⊢ 0 ≤ 2 | |
3 | resqrtth 11024 | . . . . . . . . . . . 12 ⊢ ((2 ∈ ℝ ∧ 0 ≤ 2) → ((√‘2)↑2) = 2) | |
4 | 1, 2, 3 | mp2an 426 | . . . . . . . . . . 11 ⊢ ((√‘2)↑2) = 2 |
5 | sqrt2irrlem.3 | . . . . . . . . . . . 12 ⊢ (𝜑 → (√‘2) = (𝐴 / 𝐵)) | |
6 | 5 | oveq1d 5884 | . . . . . . . . . . 11 ⊢ (𝜑 → ((√‘2)↑2) = ((𝐴 / 𝐵)↑2)) |
7 | 4, 6 | eqtr3id 2224 | . . . . . . . . . 10 ⊢ (𝜑 → 2 = ((𝐴 / 𝐵)↑2)) |
8 | sqrt2irrlem.1 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
9 | 8 | zcnd 9365 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
10 | sqrt2irrlem.2 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
11 | 10 | nncnd 8922 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
12 | 10 | nnap0d 8954 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 # 0) |
13 | 9, 11, 12 | sqdivapd 10652 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2))) |
14 | 7, 13 | eqtrd 2210 | . . . . . . . . 9 ⊢ (𝜑 → 2 = ((𝐴↑2) / (𝐵↑2))) |
15 | 14 | oveq1d 5884 | . . . . . . . 8 ⊢ (𝜑 → (2 · (𝐵↑2)) = (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2))) |
16 | 9 | sqcld 10637 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴↑2) ∈ ℂ) |
17 | 10 | nnsqcld 10660 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐵↑2) ∈ ℕ) |
18 | 17 | nncnd 8922 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵↑2) ∈ ℂ) |
19 | 17 | nnap0d 8954 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵↑2) # 0) |
20 | 16, 18, 19 | divcanap1d 8737 | . . . . . . . 8 ⊢ (𝜑 → (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2)) = (𝐴↑2)) |
21 | 15, 20 | eqtrd 2210 | . . . . . . 7 ⊢ (𝜑 → (2 · (𝐵↑2)) = (𝐴↑2)) |
22 | 21 | oveq1d 5884 | . . . . . 6 ⊢ (𝜑 → ((2 · (𝐵↑2)) / 2) = ((𝐴↑2) / 2)) |
23 | 2cnd 8981 | . . . . . . 7 ⊢ (𝜑 → 2 ∈ ℂ) | |
24 | 2ap0 9001 | . . . . . . . 8 ⊢ 2 # 0 | |
25 | 24 | a1i 9 | . . . . . . 7 ⊢ (𝜑 → 2 # 0) |
26 | 18, 23, 25 | divcanap3d 8741 | . . . . . 6 ⊢ (𝜑 → ((2 · (𝐵↑2)) / 2) = (𝐵↑2)) |
27 | 22, 26 | eqtr3d 2212 | . . . . 5 ⊢ (𝜑 → ((𝐴↑2) / 2) = (𝐵↑2)) |
28 | 27, 17 | eqeltrd 2254 | . . . 4 ⊢ (𝜑 → ((𝐴↑2) / 2) ∈ ℕ) |
29 | 28 | nnzd 9363 | . . 3 ⊢ (𝜑 → ((𝐴↑2) / 2) ∈ ℤ) |
30 | zesq 10624 | . . . 4 ⊢ (𝐴 ∈ ℤ → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ)) | |
31 | 8, 30 | syl 14 | . . 3 ⊢ (𝜑 → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈ ℤ)) |
32 | 29, 31 | mpbird 167 | . 2 ⊢ (𝜑 → (𝐴 / 2) ∈ ℤ) |
33 | 2cn 8979 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
34 | 33 | sqvali 10585 | . . . . . . . 8 ⊢ (2↑2) = (2 · 2) |
35 | 34 | oveq2i 5880 | . . . . . . 7 ⊢ ((𝐴↑2) / (2↑2)) = ((𝐴↑2) / (2 · 2)) |
36 | 9, 23, 25 | sqdivapd 10652 | . . . . . . 7 ⊢ (𝜑 → ((𝐴 / 2)↑2) = ((𝐴↑2) / (2↑2))) |
37 | 16, 23, 23, 25, 25 | divdivap1d 8768 | . . . . . . 7 ⊢ (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐴↑2) / (2 · 2))) |
38 | 35, 36, 37 | 3eqtr4a 2236 | . . . . . 6 ⊢ (𝜑 → ((𝐴 / 2)↑2) = (((𝐴↑2) / 2) / 2)) |
39 | 27 | oveq1d 5884 | . . . . . 6 ⊢ (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐵↑2) / 2)) |
40 | 38, 39 | eqtrd 2210 | . . . . 5 ⊢ (𝜑 → ((𝐴 / 2)↑2) = ((𝐵↑2) / 2)) |
41 | zsqcl 10576 | . . . . . 6 ⊢ ((𝐴 / 2) ∈ ℤ → ((𝐴 / 2)↑2) ∈ ℤ) | |
42 | 32, 41 | syl 14 | . . . . 5 ⊢ (𝜑 → ((𝐴 / 2)↑2) ∈ ℤ) |
43 | 40, 42 | eqeltrrd 2255 | . . . 4 ⊢ (𝜑 → ((𝐵↑2) / 2) ∈ ℤ) |
44 | 17 | nnrpd 9681 | . . . . . 6 ⊢ (𝜑 → (𝐵↑2) ∈ ℝ+) |
45 | 44 | rphalfcld 9696 | . . . . 5 ⊢ (𝜑 → ((𝐵↑2) / 2) ∈ ℝ+) |
46 | 45 | rpgt0d 9686 | . . . 4 ⊢ (𝜑 → 0 < ((𝐵↑2) / 2)) |
47 | elnnz 9252 | . . . 4 ⊢ (((𝐵↑2) / 2) ∈ ℕ ↔ (((𝐵↑2) / 2) ∈ ℤ ∧ 0 < ((𝐵↑2) / 2))) | |
48 | 43, 46, 47 | sylanbrc 417 | . . 3 ⊢ (𝜑 → ((𝐵↑2) / 2) ∈ ℕ) |
49 | nnesq 10625 | . . . 4 ⊢ (𝐵 ∈ ℕ → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ)) | |
50 | 10, 49 | syl 14 | . . 3 ⊢ (𝜑 → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈ ℕ)) |
51 | 48, 50 | mpbird 167 | . 2 ⊢ (𝜑 → (𝐵 / 2) ∈ ℕ) |
52 | 32, 51 | jca 306 | 1 ⊢ (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 class class class wbr 4000 ‘cfv 5212 (class class class)co 5869 ℝcr 7801 0cc0 7802 · cmul 7807 < clt 7982 ≤ cle 7983 # cap 8528 / cdiv 8618 ℕcn 8908 2c2 8959 ℤcz 9242 ↑cexp 10505 √csqrt 10989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4115 ax-sep 4118 ax-nul 4126 ax-pow 4171 ax-pr 4206 ax-un 4430 ax-setind 4533 ax-iinf 4584 ax-cnex 7893 ax-resscn 7894 ax-1cn 7895 ax-1re 7896 ax-icn 7897 ax-addcl 7898 ax-addrcl 7899 ax-mulcl 7900 ax-mulrcl 7901 ax-addcom 7902 ax-mulcom 7903 ax-addass 7904 ax-mulass 7905 ax-distr 7906 ax-i2m1 7907 ax-0lt1 7908 ax-1rid 7909 ax-0id 7910 ax-rnegex 7911 ax-precex 7912 ax-cnre 7913 ax-pre-ltirr 7914 ax-pre-ltwlin 7915 ax-pre-lttrn 7916 ax-pre-apti 7917 ax-pre-ltadd 7918 ax-pre-mulgt0 7919 ax-pre-mulext 7920 ax-arch 7921 ax-caucvg 7922 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3576 df-sn 3597 df-pr 3598 df-op 3600 df-uni 3808 df-int 3843 df-iun 3886 df-br 4001 df-opab 4062 df-mpt 4063 df-tr 4099 df-id 4290 df-po 4293 df-iso 4294 df-iord 4363 df-on 4365 df-ilim 4366 df-suc 4368 df-iom 4587 df-xp 4629 df-rel 4630 df-cnv 4631 df-co 4632 df-dm 4633 df-rn 4634 df-res 4635 df-ima 4636 df-iota 5174 df-fun 5214 df-fn 5215 df-f 5216 df-f1 5217 df-fo 5218 df-f1o 5219 df-fv 5220 df-riota 5825 df-ov 5872 df-oprab 5873 df-mpo 5874 df-1st 6135 df-2nd 6136 df-recs 6300 df-frec 6386 df-pnf 7984 df-mnf 7985 df-xr 7986 df-ltxr 7987 df-le 7988 df-sub 8120 df-neg 8121 df-reap 8522 df-ap 8529 df-div 8619 df-inn 8909 df-2 8967 df-3 8968 df-4 8969 df-n0 9166 df-z 9243 df-uz 9518 df-rp 9641 df-seqfrec 10432 df-exp 10506 df-rsqrt 10991 |
This theorem is referenced by: sqrt2irr 12145 |
Copyright terms: Public domain | W3C validator |