Proof of Theorem sqrt2irrlem
| Step | Hyp | Ref
| Expression |
| 1 | | 2re 9060 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℝ |
| 2 | | 0le2 9080 |
. . . . . . . . . . . 12
⊢ 0 ≤
2 |
| 3 | | resqrtth 11196 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℝ ∧ 0 ≤ 2) → ((√‘2)↑2) =
2) |
| 4 | 1, 2, 3 | mp2an 426 |
. . . . . . . . . . 11
⊢
((√‘2)↑2) = 2 |
| 5 | | sqrt2irrlem.3 |
. . . . . . . . . . . 12
⊢ (𝜑 → (√‘2) = (𝐴 / 𝐵)) |
| 6 | 5 | oveq1d 5937 |
. . . . . . . . . . 11
⊢ (𝜑 → ((√‘2)↑2)
= ((𝐴 / 𝐵)↑2)) |
| 7 | 4, 6 | eqtr3id 2243 |
. . . . . . . . . 10
⊢ (𝜑 → 2 = ((𝐴 / 𝐵)↑2)) |
| 8 | | sqrt2irrlem.1 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 9 | 8 | zcnd 9449 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 10 | | sqrt2irrlem.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ ℕ) |
| 11 | 10 | nncnd 9004 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 12 | 10 | nnap0d 9036 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 # 0) |
| 13 | 9, 11, 12 | sqdivapd 10778 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2))) |
| 14 | 7, 13 | eqtrd 2229 |
. . . . . . . . 9
⊢ (𝜑 → 2 = ((𝐴↑2) / (𝐵↑2))) |
| 15 | 14 | oveq1d 5937 |
. . . . . . . 8
⊢ (𝜑 → (2 · (𝐵↑2)) = (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2))) |
| 16 | 9 | sqcld 10763 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴↑2) ∈ ℂ) |
| 17 | 10 | nnsqcld 10786 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵↑2) ∈ ℕ) |
| 18 | 17 | nncnd 9004 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵↑2) ∈ ℂ) |
| 19 | 17 | nnap0d 9036 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵↑2) # 0) |
| 20 | 16, 18, 19 | divcanap1d 8818 |
. . . . . . . 8
⊢ (𝜑 → (((𝐴↑2) / (𝐵↑2)) · (𝐵↑2)) = (𝐴↑2)) |
| 21 | 15, 20 | eqtrd 2229 |
. . . . . . 7
⊢ (𝜑 → (2 · (𝐵↑2)) = (𝐴↑2)) |
| 22 | 21 | oveq1d 5937 |
. . . . . 6
⊢ (𝜑 → ((2 · (𝐵↑2)) / 2) = ((𝐴↑2) / 2)) |
| 23 | | 2cnd 9063 |
. . . . . . 7
⊢ (𝜑 → 2 ∈
ℂ) |
| 24 | | 2ap0 9083 |
. . . . . . . 8
⊢ 2 #
0 |
| 25 | 24 | a1i 9 |
. . . . . . 7
⊢ (𝜑 → 2 # 0) |
| 26 | 18, 23, 25 | divcanap3d 8822 |
. . . . . 6
⊢ (𝜑 → ((2 · (𝐵↑2)) / 2) = (𝐵↑2)) |
| 27 | 22, 26 | eqtr3d 2231 |
. . . . 5
⊢ (𝜑 → ((𝐴↑2) / 2) = (𝐵↑2)) |
| 28 | 27, 17 | eqeltrd 2273 |
. . . 4
⊢ (𝜑 → ((𝐴↑2) / 2) ∈
ℕ) |
| 29 | 28 | nnzd 9447 |
. . 3
⊢ (𝜑 → ((𝐴↑2) / 2) ∈
ℤ) |
| 30 | | zesq 10750 |
. . . 4
⊢ (𝐴 ∈ ℤ → ((𝐴 / 2) ∈ ℤ ↔
((𝐴↑2) / 2) ∈
ℤ)) |
| 31 | 8, 30 | syl 14 |
. . 3
⊢ (𝜑 → ((𝐴 / 2) ∈ ℤ ↔ ((𝐴↑2) / 2) ∈
ℤ)) |
| 32 | 29, 31 | mpbird 167 |
. 2
⊢ (𝜑 → (𝐴 / 2) ∈ ℤ) |
| 33 | | 2cn 9061 |
. . . . . . . . 9
⊢ 2 ∈
ℂ |
| 34 | 33 | sqvali 10711 |
. . . . . . . 8
⊢
(2↑2) = (2 · 2) |
| 35 | 34 | oveq2i 5933 |
. . . . . . 7
⊢ ((𝐴↑2) / (2↑2)) = ((𝐴↑2) / (2 ·
2)) |
| 36 | 9, 23, 25 | sqdivapd 10778 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 / 2)↑2) = ((𝐴↑2) / (2↑2))) |
| 37 | 16, 23, 23, 25, 25 | divdivap1d 8849 |
. . . . . . 7
⊢ (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐴↑2) / (2 · 2))) |
| 38 | 35, 36, 37 | 3eqtr4a 2255 |
. . . . . 6
⊢ (𝜑 → ((𝐴 / 2)↑2) = (((𝐴↑2) / 2) / 2)) |
| 39 | 27 | oveq1d 5937 |
. . . . . 6
⊢ (𝜑 → (((𝐴↑2) / 2) / 2) = ((𝐵↑2) / 2)) |
| 40 | 38, 39 | eqtrd 2229 |
. . . . 5
⊢ (𝜑 → ((𝐴 / 2)↑2) = ((𝐵↑2) / 2)) |
| 41 | | zsqcl 10702 |
. . . . . 6
⊢ ((𝐴 / 2) ∈ ℤ →
((𝐴 / 2)↑2) ∈
ℤ) |
| 42 | 32, 41 | syl 14 |
. . . . 5
⊢ (𝜑 → ((𝐴 / 2)↑2) ∈
ℤ) |
| 43 | 40, 42 | eqeltrrd 2274 |
. . . 4
⊢ (𝜑 → ((𝐵↑2) / 2) ∈
ℤ) |
| 44 | 17 | nnrpd 9769 |
. . . . . 6
⊢ (𝜑 → (𝐵↑2) ∈
ℝ+) |
| 45 | 44 | rphalfcld 9784 |
. . . . 5
⊢ (𝜑 → ((𝐵↑2) / 2) ∈
ℝ+) |
| 46 | 45 | rpgt0d 9774 |
. . . 4
⊢ (𝜑 → 0 < ((𝐵↑2) / 2)) |
| 47 | | elnnz 9336 |
. . . 4
⊢ (((𝐵↑2) / 2) ∈ ℕ
↔ (((𝐵↑2) / 2)
∈ ℤ ∧ 0 < ((𝐵↑2) / 2))) |
| 48 | 43, 46, 47 | sylanbrc 417 |
. . 3
⊢ (𝜑 → ((𝐵↑2) / 2) ∈
ℕ) |
| 49 | | nnesq 10751 |
. . . 4
⊢ (𝐵 ∈ ℕ → ((𝐵 / 2) ∈ ℕ ↔
((𝐵↑2) / 2) ∈
ℕ)) |
| 50 | 10, 49 | syl 14 |
. . 3
⊢ (𝜑 → ((𝐵 / 2) ∈ ℕ ↔ ((𝐵↑2) / 2) ∈
ℕ)) |
| 51 | 48, 50 | mpbird 167 |
. 2
⊢ (𝜑 → (𝐵 / 2) ∈ ℕ) |
| 52 | 32, 51 | jca 306 |
1
⊢ (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈
ℕ)) |