ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reccn2ap GIF version

Theorem reccn2ap 11497
Description: The reciprocal function is continuous. The class 𝑇 is just for convenience in writing the proof and typically would be passed in as an instance of eqid 2196. (Contributed by Mario Carneiro, 9-Feb-2014.) Using apart, infimum of pair. (Revised by Jim Kingdon, 26-May-2023.)
Hypothesis
Ref Expression
reccn2ap.t 𝑇 = (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2))
Assertion
Ref Expression
reccn2ap ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
Distinct variable groups:   𝑦,𝑤,𝑧,𝐴   𝑤,𝐵,𝑦,𝑧   𝑦,𝑇,𝑧
Allowed substitution hint:   𝑇(𝑤)

Proof of Theorem reccn2ap
StepHypRef Expression
1 reccn2ap.t . . 3 𝑇 = (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2))
2 1red 8060 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 1 ∈ ℝ)
3 simp1 999 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℂ)
4 simp2 1000 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 𝐴 # 0)
53, 4absrpclapd 11372 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → (abs‘𝐴) ∈ ℝ+)
6 simp3 1001 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
75, 6rpmulcld 9807 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → ((abs‘𝐴) · 𝐵) ∈ ℝ+)
87rpred 9790 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → ((abs‘𝐴) · 𝐵) ∈ ℝ)
9 mincl 11415 . . . . . 6 ((1 ∈ ℝ ∧ ((abs‘𝐴) · 𝐵) ∈ ℝ) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ∈ ℝ)
102, 8, 9syl2anc 411 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ∈ ℝ)
117rpgt0d 9793 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 0 < ((abs‘𝐴) · 𝐵))
12 0lt1 8172 . . . . . . 7 0 < 1
1311, 12jctil 312 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → (0 < 1 ∧ 0 < ((abs‘𝐴) · 𝐵)))
14 0red 8046 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 0 ∈ ℝ)
15 ltmininf 11419 . . . . . . 7 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((abs‘𝐴) · 𝐵) ∈ ℝ) → (0 < inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ↔ (0 < 1 ∧ 0 < ((abs‘𝐴) · 𝐵))))
1614, 2, 8, 15syl3anc 1249 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → (0 < inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ↔ (0 < 1 ∧ 0 < ((abs‘𝐴) · 𝐵))))
1713, 16mpbird 167 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 0 < inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ))
1810, 17elrpd 9787 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ∈ ℝ+)
195rphalfcld 9803 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → ((abs‘𝐴) / 2) ∈ ℝ+)
2018, 19rpmulcld 9807 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2)) ∈ ℝ+)
211, 20eqeltrid 2283 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 𝑇 ∈ ℝ+)
223adantr 276 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝐴 ∈ ℂ)
23 simprl 529 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0})
24 breq1 4037 . . . . . . . . . . . 12 (𝑤 = 𝑧 → (𝑤 # 0 ↔ 𝑧 # 0))
2524elrab 2920 . . . . . . . . . . 11 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↔ (𝑧 ∈ ℂ ∧ 𝑧 # 0))
2623, 25sylib 122 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 ∈ ℂ ∧ 𝑧 # 0))
2726simpld 112 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑧 ∈ ℂ)
2822, 27mulcld 8066 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 · 𝑧) ∈ ℂ)
294adantr 276 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝐴 # 0)
3026simprd 114 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑧 # 0)
3122, 27, 29, 30mulap0d 8704 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 · 𝑧) # 0)
3222, 27, 28, 31divsubdirapd 8876 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴𝑧) / (𝐴 · 𝑧)) = ((𝐴 / (𝐴 · 𝑧)) − (𝑧 / (𝐴 · 𝑧))))
3322mulridd 8062 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 · 1) = 𝐴)
3433oveq1d 5940 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴 · 1) / (𝐴 · 𝑧)) = (𝐴 / (𝐴 · 𝑧)))
35 1cnd 8061 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 1 ∈ ℂ)
3635, 27, 22, 30, 29divcanap5d 8863 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴 · 1) / (𝐴 · 𝑧)) = (1 / 𝑧))
3734, 36eqtr3d 2231 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 / (𝐴 · 𝑧)) = (1 / 𝑧))
3827mulridd 8062 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 · 1) = 𝑧)
3927, 22mulcomd 8067 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 · 𝐴) = (𝐴 · 𝑧))
4038, 39oveq12d 5943 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝑧 · 1) / (𝑧 · 𝐴)) = (𝑧 / (𝐴 · 𝑧)))
4135, 22, 27, 29, 30divcanap5d 8863 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝑧 · 1) / (𝑧 · 𝐴)) = (1 / 𝐴))
4240, 41eqtr3d 2231 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 / (𝐴 · 𝑧)) = (1 / 𝐴))
4337, 42oveq12d 5943 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴 / (𝐴 · 𝑧)) − (𝑧 / (𝐴 · 𝑧))) = ((1 / 𝑧) − (1 / 𝐴)))
4432, 43eqtrd 2229 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴𝑧) / (𝐴 · 𝑧)) = ((1 / 𝑧) − (1 / 𝐴)))
4544fveq2d 5565 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((𝐴𝑧) / (𝐴 · 𝑧))) = (abs‘((1 / 𝑧) − (1 / 𝐴))))
4622, 27subcld 8356 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴𝑧) ∈ ℂ)
4746, 28, 31absdivapd 11379 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((𝐴𝑧) / (𝐴 · 𝑧))) = ((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))))
4845, 47eqtr3d 2231 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((1 / 𝑧) − (1 / 𝐴))) = ((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))))
4946abscld 11365 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) ∈ ℝ)
5021adantr 276 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ∈ ℝ+)
5150rpred 9790 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ∈ ℝ)
5228abscld 11365 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴 · 𝑧)) ∈ ℝ)
536rpred 9790 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ)
5453adantr 276 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝐵 ∈ ℝ)
5552, 54remulcld 8076 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴 · 𝑧)) · 𝐵) ∈ ℝ)
5622, 27abssubd 11377 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) = (abs‘(𝑧𝐴)))
57 simprr 531 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝑧𝐴)) < 𝑇)
5856, 57eqbrtrd 4056 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) < 𝑇)
597adantr 276 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) · 𝐵) ∈ ℝ+)
6059rpred 9790 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) · 𝐵) ∈ ℝ)
6119adantr 276 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) ∈ ℝ+)
6261rpred 9790 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) ∈ ℝ)
6360, 62remulcld 8076 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)) ∈ ℝ)
64 1re 8044 . . . . . . . . . . 11 1 ∈ ℝ
65 min2inf 11417 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ ((abs‘𝐴) · 𝐵) ∈ ℝ) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ≤ ((abs‘𝐴) · 𝐵))
6664, 60, 65sylancr 414 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ≤ ((abs‘𝐴) · 𝐵))
6710adantr 276 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ∈ ℝ)
6867, 60, 61lemul1d 9834 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ≤ ((abs‘𝐴) · 𝐵) ↔ (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2)) ≤ (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2))))
6966, 68mpbid 147 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2)) ≤ (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)))
701, 69eqbrtrid 4069 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ≤ (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)))
7127abscld 11365 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝑧) ∈ ℝ)
7222abscld 11365 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝐴) ∈ ℝ)
7372recnd 8074 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝐴) ∈ ℂ)
74732halvesd 9256 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) / 2) + ((abs‘𝐴) / 2)) = (abs‘𝐴))
7572, 71resubcld 8426 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) − (abs‘𝑧)) ∈ ℝ)
7627, 22subcld 8356 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧𝐴) ∈ ℂ)
7776abscld 11365 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝑧𝐴)) ∈ ℝ)
7856, 77eqeltrd 2273 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) ∈ ℝ)
7922, 27abs2difd 11381 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) − (abs‘𝑧)) ≤ (abs‘(𝐴𝑧)))
80 min1inf 11416 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ ∧ ((abs‘𝐴) · 𝐵) ∈ ℝ) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ≤ 1)
8164, 60, 80sylancr 414 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ≤ 1)
82 1red 8060 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 1 ∈ ℝ)
8367, 82, 61lemul1d 9834 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ≤ 1 ↔ (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2)) ≤ (1 · ((abs‘𝐴) / 2))))
8481, 83mpbid 147 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2)) ≤ (1 · ((abs‘𝐴) / 2)))
851, 84eqbrtrid 4069 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ≤ (1 · ((abs‘𝐴) / 2)))
8662recnd 8074 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) ∈ ℂ)
8786mulid2d 8064 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (1 · ((abs‘𝐴) / 2)) = ((abs‘𝐴) / 2))
8885, 87breqtrd 4060 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ≤ ((abs‘𝐴) / 2))
8978, 51, 62, 58, 88ltletrd 8469 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) < ((abs‘𝐴) / 2))
9075, 78, 62, 79, 89lelttrd 8170 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) − (abs‘𝑧)) < ((abs‘𝐴) / 2))
9172, 71, 62ltsubadd2d 8589 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) − (abs‘𝑧)) < ((abs‘𝐴) / 2) ↔ (abs‘𝐴) < ((abs‘𝑧) + ((abs‘𝐴) / 2))))
9290, 91mpbid 147 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝐴) < ((abs‘𝑧) + ((abs‘𝐴) / 2)))
9374, 92eqbrtrd 4056 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) / 2) + ((abs‘𝐴) / 2)) < ((abs‘𝑧) + ((abs‘𝐴) / 2)))
9462, 71, 62ltadd1d 8584 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) / 2) < (abs‘𝑧) ↔ (((abs‘𝐴) / 2) + ((abs‘𝐴) / 2)) < ((abs‘𝑧) + ((abs‘𝐴) / 2))))
9593, 94mpbird 167 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) < (abs‘𝑧))
9662, 71, 59, 95ltmul2dd 9847 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)) < (((abs‘𝐴) · 𝐵) · (abs‘𝑧)))
9722, 27absmuld 11378 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴 · 𝑧)) = ((abs‘𝐴) · (abs‘𝑧)))
9897oveq1d 5940 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴 · 𝑧)) · 𝐵) = (((abs‘𝐴) · (abs‘𝑧)) · 𝐵))
9971recnd 8074 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝑧) ∈ ℂ)
10054recnd 8074 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝐵 ∈ ℂ)
10173, 99, 100mul32d 8198 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · (abs‘𝑧)) · 𝐵) = (((abs‘𝐴) · 𝐵) · (abs‘𝑧)))
10298, 101eqtrd 2229 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴 · 𝑧)) · 𝐵) = (((abs‘𝐴) · 𝐵) · (abs‘𝑧)))
10396, 102breqtrrd 4062 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)) < ((abs‘(𝐴 · 𝑧)) · 𝐵))
10451, 63, 55, 70, 103lelttrd 8170 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 < ((abs‘(𝐴 · 𝑧)) · 𝐵))
10549, 51, 55, 58, 104lttrd 8171 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) < ((abs‘(𝐴 · 𝑧)) · 𝐵))
10628, 31absrpclapd 11372 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴 · 𝑧)) ∈ ℝ+)
10749, 54, 106ltdivmuld 9842 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))) < 𝐵 ↔ (abs‘(𝐴𝑧)) < ((abs‘(𝐴 · 𝑧)) · 𝐵)))
108105, 107mpbird 167 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))) < 𝐵)
10948, 108eqbrtrd 4056 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵)
110109expr 375 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((abs‘(𝑧𝐴)) < 𝑇 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
111110ralrimiva 2570 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → ∀𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ((abs‘(𝑧𝐴)) < 𝑇 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
112 breq2 4038 . . 3 (𝑦 = 𝑇 → ((abs‘(𝑧𝐴)) < 𝑦 ↔ (abs‘(𝑧𝐴)) < 𝑇))
113112rspceaimv 2876 . 2 ((𝑇 ∈ ℝ+ ∧ ∀𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ((abs‘(𝑧𝐴)) < 𝑇 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵)) → ∃𝑦 ∈ ℝ+𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
11421, 111, 113syl2anc 411 1 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  wral 2475  wrex 2476  {crab 2479  {cpr 3624   class class class wbr 4034  cfv 5259  (class class class)co 5925  infcinf 7058  cc 7896  cr 7897  0cc0 7898  1c1 7899   + caddc 7901   · cmul 7903   < clt 8080  cle 8081  cmin 8216   # cap 8627   / cdiv 8718  2c2 9060  +crp 9747  abscabs 11181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-rp 9748  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183
This theorem is referenced by:  divcnap  14887  cdivcncfap  14926
  Copyright terms: Public domain W3C validator