ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reccn2ap GIF version

Theorem reccn2ap 11305
Description: The reciprocal function is continuous. The class 𝑇 is just for convenience in writing the proof and typically would be passed in as an instance of eqid 2177. (Contributed by Mario Carneiro, 9-Feb-2014.) Using apart, infimum of pair. (Revised by Jim Kingdon, 26-May-2023.)
Hypothesis
Ref Expression
reccn2ap.t 𝑇 = (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2))
Assertion
Ref Expression
reccn2ap ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
Distinct variable groups:   𝑦,𝑤,𝑧,𝐴   𝑤,𝐵,𝑦,𝑧   𝑦,𝑇,𝑧
Allowed substitution hint:   𝑇(𝑤)

Proof of Theorem reccn2ap
StepHypRef Expression
1 reccn2ap.t . . 3 𝑇 = (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2))
2 1red 7963 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 1 ∈ ℝ)
3 simp1 997 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℂ)
4 simp2 998 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 𝐴 # 0)
53, 4absrpclapd 11181 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → (abs‘𝐴) ∈ ℝ+)
6 simp3 999 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
75, 6rpmulcld 9700 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → ((abs‘𝐴) · 𝐵) ∈ ℝ+)
87rpred 9683 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → ((abs‘𝐴) · 𝐵) ∈ ℝ)
9 mincl 11223 . . . . . 6 ((1 ∈ ℝ ∧ ((abs‘𝐴) · 𝐵) ∈ ℝ) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ∈ ℝ)
102, 8, 9syl2anc 411 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ∈ ℝ)
117rpgt0d 9686 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 0 < ((abs‘𝐴) · 𝐵))
12 0lt1 8074 . . . . . . 7 0 < 1
1311, 12jctil 312 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → (0 < 1 ∧ 0 < ((abs‘𝐴) · 𝐵)))
14 0red 7949 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 0 ∈ ℝ)
15 ltmininf 11227 . . . . . . 7 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((abs‘𝐴) · 𝐵) ∈ ℝ) → (0 < inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ↔ (0 < 1 ∧ 0 < ((abs‘𝐴) · 𝐵))))
1614, 2, 8, 15syl3anc 1238 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → (0 < inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ↔ (0 < 1 ∧ 0 < ((abs‘𝐴) · 𝐵))))
1713, 16mpbird 167 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 0 < inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ))
1810, 17elrpd 9680 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ∈ ℝ+)
195rphalfcld 9696 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → ((abs‘𝐴) / 2) ∈ ℝ+)
2018, 19rpmulcld 9700 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2)) ∈ ℝ+)
211, 20eqeltrid 2264 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 𝑇 ∈ ℝ+)
223adantr 276 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝐴 ∈ ℂ)
23 simprl 529 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0})
24 breq1 4003 . . . . . . . . . . . 12 (𝑤 = 𝑧 → (𝑤 # 0 ↔ 𝑧 # 0))
2524elrab 2893 . . . . . . . . . . 11 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↔ (𝑧 ∈ ℂ ∧ 𝑧 # 0))
2623, 25sylib 122 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 ∈ ℂ ∧ 𝑧 # 0))
2726simpld 112 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑧 ∈ ℂ)
2822, 27mulcld 7968 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 · 𝑧) ∈ ℂ)
294adantr 276 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝐴 # 0)
3026simprd 114 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑧 # 0)
3122, 27, 29, 30mulap0d 8604 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 · 𝑧) # 0)
3222, 27, 28, 31divsubdirapd 8776 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴𝑧) / (𝐴 · 𝑧)) = ((𝐴 / (𝐴 · 𝑧)) − (𝑧 / (𝐴 · 𝑧))))
3322mulid1d 7965 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 · 1) = 𝐴)
3433oveq1d 5884 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴 · 1) / (𝐴 · 𝑧)) = (𝐴 / (𝐴 · 𝑧)))
35 1cnd 7964 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 1 ∈ ℂ)
3635, 27, 22, 30, 29divcanap5d 8763 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴 · 1) / (𝐴 · 𝑧)) = (1 / 𝑧))
3734, 36eqtr3d 2212 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 / (𝐴 · 𝑧)) = (1 / 𝑧))
3827mulid1d 7965 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 · 1) = 𝑧)
3927, 22mulcomd 7969 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 · 𝐴) = (𝐴 · 𝑧))
4038, 39oveq12d 5887 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝑧 · 1) / (𝑧 · 𝐴)) = (𝑧 / (𝐴 · 𝑧)))
4135, 22, 27, 29, 30divcanap5d 8763 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝑧 · 1) / (𝑧 · 𝐴)) = (1 / 𝐴))
4240, 41eqtr3d 2212 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 / (𝐴 · 𝑧)) = (1 / 𝐴))
4337, 42oveq12d 5887 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴 / (𝐴 · 𝑧)) − (𝑧 / (𝐴 · 𝑧))) = ((1 / 𝑧) − (1 / 𝐴)))
4432, 43eqtrd 2210 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴𝑧) / (𝐴 · 𝑧)) = ((1 / 𝑧) − (1 / 𝐴)))
4544fveq2d 5515 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((𝐴𝑧) / (𝐴 · 𝑧))) = (abs‘((1 / 𝑧) − (1 / 𝐴))))
4622, 27subcld 8258 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴𝑧) ∈ ℂ)
4746, 28, 31absdivapd 11188 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((𝐴𝑧) / (𝐴 · 𝑧))) = ((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))))
4845, 47eqtr3d 2212 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((1 / 𝑧) − (1 / 𝐴))) = ((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))))
4946abscld 11174 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) ∈ ℝ)
5021adantr 276 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ∈ ℝ+)
5150rpred 9683 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ∈ ℝ)
5228abscld 11174 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴 · 𝑧)) ∈ ℝ)
536rpred 9683 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ)
5453adantr 276 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝐵 ∈ ℝ)
5552, 54remulcld 7978 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴 · 𝑧)) · 𝐵) ∈ ℝ)
5622, 27abssubd 11186 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) = (abs‘(𝑧𝐴)))
57 simprr 531 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝑧𝐴)) < 𝑇)
5856, 57eqbrtrd 4022 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) < 𝑇)
597adantr 276 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) · 𝐵) ∈ ℝ+)
6059rpred 9683 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) · 𝐵) ∈ ℝ)
6119adantr 276 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) ∈ ℝ+)
6261rpred 9683 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) ∈ ℝ)
6360, 62remulcld 7978 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)) ∈ ℝ)
64 1re 7947 . . . . . . . . . . 11 1 ∈ ℝ
65 min2inf 11225 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ ((abs‘𝐴) · 𝐵) ∈ ℝ) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ≤ ((abs‘𝐴) · 𝐵))
6664, 60, 65sylancr 414 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ≤ ((abs‘𝐴) · 𝐵))
6710adantr 276 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ∈ ℝ)
6867, 60, 61lemul1d 9727 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ≤ ((abs‘𝐴) · 𝐵) ↔ (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2)) ≤ (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2))))
6966, 68mpbid 147 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2)) ≤ (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)))
701, 69eqbrtrid 4035 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ≤ (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)))
7127abscld 11174 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝑧) ∈ ℝ)
7222abscld 11174 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝐴) ∈ ℝ)
7372recnd 7976 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝐴) ∈ ℂ)
74732halvesd 9153 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) / 2) + ((abs‘𝐴) / 2)) = (abs‘𝐴))
7572, 71resubcld 8328 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) − (abs‘𝑧)) ∈ ℝ)
7627, 22subcld 8258 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧𝐴) ∈ ℂ)
7776abscld 11174 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝑧𝐴)) ∈ ℝ)
7856, 77eqeltrd 2254 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) ∈ ℝ)
7922, 27abs2difd 11190 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) − (abs‘𝑧)) ≤ (abs‘(𝐴𝑧)))
80 min1inf 11224 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ ∧ ((abs‘𝐴) · 𝐵) ∈ ℝ) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ≤ 1)
8164, 60, 80sylancr 414 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ≤ 1)
82 1red 7963 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 1 ∈ ℝ)
8367, 82, 61lemul1d 9727 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ≤ 1 ↔ (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2)) ≤ (1 · ((abs‘𝐴) / 2))))
8481, 83mpbid 147 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2)) ≤ (1 · ((abs‘𝐴) / 2)))
851, 84eqbrtrid 4035 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ≤ (1 · ((abs‘𝐴) / 2)))
8662recnd 7976 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) ∈ ℂ)
8786mulid2d 7966 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (1 · ((abs‘𝐴) / 2)) = ((abs‘𝐴) / 2))
8885, 87breqtrd 4026 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ≤ ((abs‘𝐴) / 2))
8978, 51, 62, 58, 88ltletrd 8370 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) < ((abs‘𝐴) / 2))
9075, 78, 62, 79, 89lelttrd 8072 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) − (abs‘𝑧)) < ((abs‘𝐴) / 2))
9172, 71, 62ltsubadd2d 8490 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) − (abs‘𝑧)) < ((abs‘𝐴) / 2) ↔ (abs‘𝐴) < ((abs‘𝑧) + ((abs‘𝐴) / 2))))
9290, 91mpbid 147 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝐴) < ((abs‘𝑧) + ((abs‘𝐴) / 2)))
9374, 92eqbrtrd 4022 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) / 2) + ((abs‘𝐴) / 2)) < ((abs‘𝑧) + ((abs‘𝐴) / 2)))
9462, 71, 62ltadd1d 8485 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) / 2) < (abs‘𝑧) ↔ (((abs‘𝐴) / 2) + ((abs‘𝐴) / 2)) < ((abs‘𝑧) + ((abs‘𝐴) / 2))))
9593, 94mpbird 167 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) < (abs‘𝑧))
9662, 71, 59, 95ltmul2dd 9740 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)) < (((abs‘𝐴) · 𝐵) · (abs‘𝑧)))
9722, 27absmuld 11187 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴 · 𝑧)) = ((abs‘𝐴) · (abs‘𝑧)))
9897oveq1d 5884 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴 · 𝑧)) · 𝐵) = (((abs‘𝐴) · (abs‘𝑧)) · 𝐵))
9971recnd 7976 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝑧) ∈ ℂ)
10054recnd 7976 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝐵 ∈ ℂ)
10173, 99, 100mul32d 8100 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · (abs‘𝑧)) · 𝐵) = (((abs‘𝐴) · 𝐵) · (abs‘𝑧)))
10298, 101eqtrd 2210 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴 · 𝑧)) · 𝐵) = (((abs‘𝐴) · 𝐵) · (abs‘𝑧)))
10396, 102breqtrrd 4028 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)) < ((abs‘(𝐴 · 𝑧)) · 𝐵))
10451, 63, 55, 70, 103lelttrd 8072 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 < ((abs‘(𝐴 · 𝑧)) · 𝐵))
10549, 51, 55, 58, 104lttrd 8073 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) < ((abs‘(𝐴 · 𝑧)) · 𝐵))
10628, 31absrpclapd 11181 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴 · 𝑧)) ∈ ℝ+)
10749, 54, 106ltdivmuld 9735 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))) < 𝐵 ↔ (abs‘(𝐴𝑧)) < ((abs‘(𝐴 · 𝑧)) · 𝐵)))
108105, 107mpbird 167 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))) < 𝐵)
10948, 108eqbrtrd 4022 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵)
110109expr 375 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((abs‘(𝑧𝐴)) < 𝑇 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
111110ralrimiva 2550 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → ∀𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ((abs‘(𝑧𝐴)) < 𝑇 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
112 breq2 4004 . . 3 (𝑦 = 𝑇 → ((abs‘(𝑧𝐴)) < 𝑦 ↔ (abs‘(𝑧𝐴)) < 𝑇))
113112rspceaimv 2849 . 2 ((𝑇 ∈ ℝ+ ∧ ∀𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ((abs‘(𝑧𝐴)) < 𝑇 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵)) → ∃𝑦 ∈ ℝ+𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
11421, 111, 113syl2anc 411 1 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148  wral 2455  wrex 2456  {crab 2459  {cpr 3592   class class class wbr 4000  cfv 5212  (class class class)co 5869  infcinf 6976  cc 7800  cr 7801  0cc0 7802  1c1 7803   + caddc 7805   · cmul 7807   < clt 7982  cle 7983  cmin 8118   # cap 8528   / cdiv 8618  2c2 8959  +crp 9640  abscabs 10990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992
This theorem is referenced by:  divcnap  13722  cdivcncfap  13754
  Copyright terms: Public domain W3C validator