Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  reccn2ap GIF version

Theorem reccn2ap 11110
 Description: The reciprocal function is continuous. The class 𝑇 is just for convenience in writing the proof and typically would be passed in as an instance of eqid 2140. (Contributed by Mario Carneiro, 9-Feb-2014.) Using apart, infimum of pair. (Revised by Jim Kingdon, 26-May-2023.)
Hypothesis
Ref Expression
reccn2ap.t 𝑇 = (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2))
Assertion
Ref Expression
reccn2ap ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
Distinct variable groups:   𝑦,𝑤,𝑧,𝐴   𝑤,𝐵,𝑦,𝑧   𝑦,𝑇,𝑧
Allowed substitution hint:   𝑇(𝑤)

Proof of Theorem reccn2ap
StepHypRef Expression
1 reccn2ap.t . . 3 𝑇 = (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2))
2 1red 7801 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 1 ∈ ℝ)
3 simp1 982 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℂ)
4 simp2 983 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 𝐴 # 0)
53, 4absrpclapd 10988 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → (abs‘𝐴) ∈ ℝ+)
6 simp3 984 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
75, 6rpmulcld 9526 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → ((abs‘𝐴) · 𝐵) ∈ ℝ+)
87rpred 9509 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → ((abs‘𝐴) · 𝐵) ∈ ℝ)
9 mincl 11030 . . . . . 6 ((1 ∈ ℝ ∧ ((abs‘𝐴) · 𝐵) ∈ ℝ) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ∈ ℝ)
102, 8, 9syl2anc 409 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ∈ ℝ)
117rpgt0d 9512 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 0 < ((abs‘𝐴) · 𝐵))
12 0lt1 7909 . . . . . . 7 0 < 1
1311, 12jctil 310 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → (0 < 1 ∧ 0 < ((abs‘𝐴) · 𝐵)))
14 0red 7787 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 0 ∈ ℝ)
15 ltmininf 11034 . . . . . . 7 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((abs‘𝐴) · 𝐵) ∈ ℝ) → (0 < inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ↔ (0 < 1 ∧ 0 < ((abs‘𝐴) · 𝐵))))
1614, 2, 8, 15syl3anc 1217 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → (0 < inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ↔ (0 < 1 ∧ 0 < ((abs‘𝐴) · 𝐵))))
1713, 16mpbird 166 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 0 < inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ))
1810, 17elrpd 9506 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ∈ ℝ+)
195rphalfcld 9522 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → ((abs‘𝐴) / 2) ∈ ℝ+)
2018, 19rpmulcld 9526 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2)) ∈ ℝ+)
211, 20eqeltrid 2227 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 𝑇 ∈ ℝ+)
223adantr 274 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝐴 ∈ ℂ)
23 simprl 521 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0})
24 breq1 3936 . . . . . . . . . . . 12 (𝑤 = 𝑧 → (𝑤 # 0 ↔ 𝑧 # 0))
2524elrab 2841 . . . . . . . . . . 11 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↔ (𝑧 ∈ ℂ ∧ 𝑧 # 0))
2623, 25sylib 121 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 ∈ ℂ ∧ 𝑧 # 0))
2726simpld 111 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑧 ∈ ℂ)
2822, 27mulcld 7806 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 · 𝑧) ∈ ℂ)
294adantr 274 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝐴 # 0)
3026simprd 113 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑧 # 0)
3122, 27, 29, 30mulap0d 8439 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 · 𝑧) # 0)
3222, 27, 28, 31divsubdirapd 8610 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴𝑧) / (𝐴 · 𝑧)) = ((𝐴 / (𝐴 · 𝑧)) − (𝑧 / (𝐴 · 𝑧))))
3322mulid1d 7803 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 · 1) = 𝐴)
3433oveq1d 5793 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴 · 1) / (𝐴 · 𝑧)) = (𝐴 / (𝐴 · 𝑧)))
35 1cnd 7802 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 1 ∈ ℂ)
3635, 27, 22, 30, 29divcanap5d 8597 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴 · 1) / (𝐴 · 𝑧)) = (1 / 𝑧))
3734, 36eqtr3d 2175 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 / (𝐴 · 𝑧)) = (1 / 𝑧))
3827mulid1d 7803 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 · 1) = 𝑧)
3927, 22mulcomd 7807 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 · 𝐴) = (𝐴 · 𝑧))
4038, 39oveq12d 5796 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝑧 · 1) / (𝑧 · 𝐴)) = (𝑧 / (𝐴 · 𝑧)))
4135, 22, 27, 29, 30divcanap5d 8597 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝑧 · 1) / (𝑧 · 𝐴)) = (1 / 𝐴))
4240, 41eqtr3d 2175 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 / (𝐴 · 𝑧)) = (1 / 𝐴))
4337, 42oveq12d 5796 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴 / (𝐴 · 𝑧)) − (𝑧 / (𝐴 · 𝑧))) = ((1 / 𝑧) − (1 / 𝐴)))
4432, 43eqtrd 2173 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴𝑧) / (𝐴 · 𝑧)) = ((1 / 𝑧) − (1 / 𝐴)))
4544fveq2d 5429 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((𝐴𝑧) / (𝐴 · 𝑧))) = (abs‘((1 / 𝑧) − (1 / 𝐴))))
4622, 27subcld 8093 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴𝑧) ∈ ℂ)
4746, 28, 31absdivapd 10995 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((𝐴𝑧) / (𝐴 · 𝑧))) = ((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))))
4845, 47eqtr3d 2175 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((1 / 𝑧) − (1 / 𝐴))) = ((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))))
4946abscld 10981 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) ∈ ℝ)
5021adantr 274 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ∈ ℝ+)
5150rpred 9509 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ∈ ℝ)
5228abscld 10981 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴 · 𝑧)) ∈ ℝ)
536rpred 9509 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ)
5453adantr 274 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝐵 ∈ ℝ)
5552, 54remulcld 7816 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴 · 𝑧)) · 𝐵) ∈ ℝ)
5622, 27abssubd 10993 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) = (abs‘(𝑧𝐴)))
57 simprr 522 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝑧𝐴)) < 𝑇)
5856, 57eqbrtrd 3954 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) < 𝑇)
597adantr 274 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) · 𝐵) ∈ ℝ+)
6059rpred 9509 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) · 𝐵) ∈ ℝ)
6119adantr 274 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) ∈ ℝ+)
6261rpred 9509 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) ∈ ℝ)
6360, 62remulcld 7816 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)) ∈ ℝ)
64 1re 7785 . . . . . . . . . . 11 1 ∈ ℝ
65 min2inf 11032 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ ((abs‘𝐴) · 𝐵) ∈ ℝ) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ≤ ((abs‘𝐴) · 𝐵))
6664, 60, 65sylancr 411 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ≤ ((abs‘𝐴) · 𝐵))
6710adantr 274 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ∈ ℝ)
6867, 60, 61lemul1d 9553 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ≤ ((abs‘𝐴) · 𝐵) ↔ (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2)) ≤ (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2))))
6966, 68mpbid 146 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2)) ≤ (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)))
701, 69eqbrtrid 3967 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ≤ (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)))
7127abscld 10981 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝑧) ∈ ℝ)
7222abscld 10981 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝐴) ∈ ℝ)
7372recnd 7814 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝐴) ∈ ℂ)
74732halvesd 8985 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) / 2) + ((abs‘𝐴) / 2)) = (abs‘𝐴))
7572, 71resubcld 8163 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) − (abs‘𝑧)) ∈ ℝ)
7627, 22subcld 8093 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧𝐴) ∈ ℂ)
7776abscld 10981 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝑧𝐴)) ∈ ℝ)
7856, 77eqeltrd 2217 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) ∈ ℝ)
7922, 27abs2difd 10997 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) − (abs‘𝑧)) ≤ (abs‘(𝐴𝑧)))
80 min1inf 11031 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ ∧ ((abs‘𝐴) · 𝐵) ∈ ℝ) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ≤ 1)
8164, 60, 80sylancr 411 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ≤ 1)
82 1red 7801 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 1 ∈ ℝ)
8367, 82, 61lemul1d 9553 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ≤ 1 ↔ (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2)) ≤ (1 · ((abs‘𝐴) / 2))))
8481, 83mpbid 146 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2)) ≤ (1 · ((abs‘𝐴) / 2)))
851, 84eqbrtrid 3967 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ≤ (1 · ((abs‘𝐴) / 2)))
8662recnd 7814 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) ∈ ℂ)
8786mulid2d 7804 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (1 · ((abs‘𝐴) / 2)) = ((abs‘𝐴) / 2))
8885, 87breqtrd 3958 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ≤ ((abs‘𝐴) / 2))
8978, 51, 62, 58, 88ltletrd 8205 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) < ((abs‘𝐴) / 2))
9075, 78, 62, 79, 89lelttrd 7907 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) − (abs‘𝑧)) < ((abs‘𝐴) / 2))
9172, 71, 62ltsubadd2d 8325 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) − (abs‘𝑧)) < ((abs‘𝐴) / 2) ↔ (abs‘𝐴) < ((abs‘𝑧) + ((abs‘𝐴) / 2))))
9290, 91mpbid 146 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝐴) < ((abs‘𝑧) + ((abs‘𝐴) / 2)))
9374, 92eqbrtrd 3954 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) / 2) + ((abs‘𝐴) / 2)) < ((abs‘𝑧) + ((abs‘𝐴) / 2)))
9462, 71, 62ltadd1d 8320 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) / 2) < (abs‘𝑧) ↔ (((abs‘𝐴) / 2) + ((abs‘𝐴) / 2)) < ((abs‘𝑧) + ((abs‘𝐴) / 2))))
9593, 94mpbird 166 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) < (abs‘𝑧))
9662, 71, 59, 95ltmul2dd 9566 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)) < (((abs‘𝐴) · 𝐵) · (abs‘𝑧)))
9722, 27absmuld 10994 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴 · 𝑧)) = ((abs‘𝐴) · (abs‘𝑧)))
9897oveq1d 5793 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴 · 𝑧)) · 𝐵) = (((abs‘𝐴) · (abs‘𝑧)) · 𝐵))
9971recnd 7814 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝑧) ∈ ℂ)
10054recnd 7814 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝐵 ∈ ℂ)
10173, 99, 100mul32d 7935 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · (abs‘𝑧)) · 𝐵) = (((abs‘𝐴) · 𝐵) · (abs‘𝑧)))
10298, 101eqtrd 2173 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴 · 𝑧)) · 𝐵) = (((abs‘𝐴) · 𝐵) · (abs‘𝑧)))
10396, 102breqtrrd 3960 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)) < ((abs‘(𝐴 · 𝑧)) · 𝐵))
10451, 63, 55, 70, 103lelttrd 7907 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 < ((abs‘(𝐴 · 𝑧)) · 𝐵))
10549, 51, 55, 58, 104lttrd 7908 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) < ((abs‘(𝐴 · 𝑧)) · 𝐵))
10628, 31absrpclapd 10988 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴 · 𝑧)) ∈ ℝ+)
10749, 54, 106ltdivmuld 9561 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))) < 𝐵 ↔ (abs‘(𝐴𝑧)) < ((abs‘(𝐴 · 𝑧)) · 𝐵)))
108105, 107mpbird 166 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))) < 𝐵)
10948, 108eqbrtrd 3954 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵)
110109expr 373 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((abs‘(𝑧𝐴)) < 𝑇 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
111110ralrimiva 2506 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → ∀𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ((abs‘(𝑧𝐴)) < 𝑇 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
112 breq2 3937 . . 3 (𝑦 = 𝑇 → ((abs‘(𝑧𝐴)) < 𝑦 ↔ (abs‘(𝑧𝐴)) < 𝑇))
113112rspceaimv 2798 . 2 ((𝑇 ∈ ℝ+ ∧ ∀𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ((abs‘(𝑧𝐴)) < 𝑇 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵)) → ∃𝑦 ∈ ℝ+𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
11421, 111, 113syl2anc 409 1 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 963   = wceq 1332   ∈ wcel 1481  ∀wral 2417  ∃wrex 2418  {crab 2421  {cpr 3529   class class class wbr 3933  ‘cfv 5127  (class class class)co 5778  infcinf 6874  ℂcc 7638  ℝcr 7639  0cc0 7640  1c1 7641   + caddc 7643   · cmul 7645   < clt 7820   ≤ cle 7821   − cmin 7953   # cap 8363   / cdiv 8452  2c2 8791  ℝ+crp 9466  abscabs 10797 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4047  ax-sep 4050  ax-nul 4058  ax-pow 4102  ax-pr 4135  ax-un 4359  ax-setind 4456  ax-iinf 4506  ax-cnex 7731  ax-resscn 7732  ax-1cn 7733  ax-1re 7734  ax-icn 7735  ax-addcl 7736  ax-addrcl 7737  ax-mulcl 7738  ax-mulrcl 7739  ax-addcom 7740  ax-mulcom 7741  ax-addass 7742  ax-mulass 7743  ax-distr 7744  ax-i2m1 7745  ax-0lt1 7746  ax-1rid 7747  ax-0id 7748  ax-rnegex 7749  ax-precex 7750  ax-cnre 7751  ax-pre-ltirr 7752  ax-pre-ltwlin 7753  ax-pre-lttrn 7754  ax-pre-apti 7755  ax-pre-ltadd 7756  ax-pre-mulgt0 7757  ax-pre-mulext 7758  ax-arch 7759  ax-caucvg 7760 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2689  df-sbc 2911  df-csb 3005  df-dif 3074  df-un 3076  df-in 3078  df-ss 3085  df-nul 3365  df-if 3476  df-pw 3513  df-sn 3534  df-pr 3535  df-op 3537  df-uni 3741  df-int 3776  df-iun 3819  df-br 3934  df-opab 3994  df-mpt 3995  df-tr 4031  df-id 4219  df-po 4222  df-iso 4223  df-iord 4292  df-on 4294  df-ilim 4295  df-suc 4297  df-iom 4509  df-xp 4549  df-rel 4550  df-cnv 4551  df-co 4552  df-dm 4553  df-rn 4554  df-res 4555  df-ima 4556  df-iota 5092  df-fun 5129  df-fn 5130  df-f 5131  df-f1 5132  df-fo 5133  df-f1o 5134  df-fv 5135  df-isom 5136  df-riota 5734  df-ov 5781  df-oprab 5782  df-mpo 5783  df-1st 6042  df-2nd 6043  df-recs 6206  df-frec 6292  df-sup 6875  df-inf 6876  df-pnf 7822  df-mnf 7823  df-xr 7824  df-ltxr 7825  df-le 7826  df-sub 7955  df-neg 7956  df-reap 8357  df-ap 8364  df-div 8453  df-inn 8741  df-2 8799  df-3 8800  df-4 8801  df-n0 8998  df-z 9075  df-uz 9347  df-rp 9467  df-seqfrec 10246  df-exp 10320  df-cj 10642  df-re 10643  df-im 10644  df-rsqrt 10798  df-abs 10799 This theorem is referenced by:  divcnap  12754  cdivcncfap  12786
 Copyright terms: Public domain W3C validator