ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reccn2ap GIF version

Theorem reccn2ap 11050
Description: The reciprocal function is continuous. The class 𝑇 is just for convenience in writing the proof and typically would be passed in as an instance of eqid 2117. (Contributed by Mario Carneiro, 9-Feb-2014.) Using apart, infimum of pair. (Revised by Jim Kingdon, 26-May-2023.)
Hypothesis
Ref Expression
reccn2ap.t 𝑇 = (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2))
Assertion
Ref Expression
reccn2ap ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
Distinct variable groups:   𝑦,𝑤,𝑧,𝐴   𝑤,𝐵,𝑦,𝑧   𝑦,𝑇,𝑧
Allowed substitution hint:   𝑇(𝑤)

Proof of Theorem reccn2ap
StepHypRef Expression
1 reccn2ap.t . . 3 𝑇 = (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2))
2 1red 7749 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 1 ∈ ℝ)
3 simp1 966 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℂ)
4 simp2 967 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 𝐴 # 0)
53, 4absrpclapd 10928 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → (abs‘𝐴) ∈ ℝ+)
6 simp3 968 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
75, 6rpmulcld 9468 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → ((abs‘𝐴) · 𝐵) ∈ ℝ+)
87rpred 9451 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → ((abs‘𝐴) · 𝐵) ∈ ℝ)
9 mincl 10970 . . . . . 6 ((1 ∈ ℝ ∧ ((abs‘𝐴) · 𝐵) ∈ ℝ) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ∈ ℝ)
102, 8, 9syl2anc 408 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ∈ ℝ)
117rpgt0d 9454 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 0 < ((abs‘𝐴) · 𝐵))
12 0lt1 7857 . . . . . . 7 0 < 1
1311, 12jctil 310 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → (0 < 1 ∧ 0 < ((abs‘𝐴) · 𝐵)))
14 0red 7735 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 0 ∈ ℝ)
15 ltmininf 10974 . . . . . . 7 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((abs‘𝐴) · 𝐵) ∈ ℝ) → (0 < inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ↔ (0 < 1 ∧ 0 < ((abs‘𝐴) · 𝐵))))
1614, 2, 8, 15syl3anc 1201 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → (0 < inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ↔ (0 < 1 ∧ 0 < ((abs‘𝐴) · 𝐵))))
1713, 16mpbird 166 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 0 < inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ))
1810, 17elrpd 9449 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ∈ ℝ+)
195rphalfcld 9464 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → ((abs‘𝐴) / 2) ∈ ℝ+)
2018, 19rpmulcld 9468 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2)) ∈ ℝ+)
211, 20eqeltrid 2204 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 𝑇 ∈ ℝ+)
223adantr 274 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝐴 ∈ ℂ)
23 simprl 505 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0})
24 breq1 3902 . . . . . . . . . . . 12 (𝑤 = 𝑧 → (𝑤 # 0 ↔ 𝑧 # 0))
2524elrab 2813 . . . . . . . . . . 11 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↔ (𝑧 ∈ ℂ ∧ 𝑧 # 0))
2623, 25sylib 121 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 ∈ ℂ ∧ 𝑧 # 0))
2726simpld 111 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑧 ∈ ℂ)
2822, 27mulcld 7754 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 · 𝑧) ∈ ℂ)
294adantr 274 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝐴 # 0)
3026simprd 113 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑧 # 0)
3122, 27, 29, 30mulap0d 8387 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 · 𝑧) # 0)
3222, 27, 28, 31divsubdirapd 8558 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴𝑧) / (𝐴 · 𝑧)) = ((𝐴 / (𝐴 · 𝑧)) − (𝑧 / (𝐴 · 𝑧))))
3322mulid1d 7751 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 · 1) = 𝐴)
3433oveq1d 5757 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴 · 1) / (𝐴 · 𝑧)) = (𝐴 / (𝐴 · 𝑧)))
35 1cnd 7750 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 1 ∈ ℂ)
3635, 27, 22, 30, 29divcanap5d 8545 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴 · 1) / (𝐴 · 𝑧)) = (1 / 𝑧))
3734, 36eqtr3d 2152 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 / (𝐴 · 𝑧)) = (1 / 𝑧))
3827mulid1d 7751 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 · 1) = 𝑧)
3927, 22mulcomd 7755 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 · 𝐴) = (𝐴 · 𝑧))
4038, 39oveq12d 5760 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝑧 · 1) / (𝑧 · 𝐴)) = (𝑧 / (𝐴 · 𝑧)))
4135, 22, 27, 29, 30divcanap5d 8545 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝑧 · 1) / (𝑧 · 𝐴)) = (1 / 𝐴))
4240, 41eqtr3d 2152 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 / (𝐴 · 𝑧)) = (1 / 𝐴))
4337, 42oveq12d 5760 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴 / (𝐴 · 𝑧)) − (𝑧 / (𝐴 · 𝑧))) = ((1 / 𝑧) − (1 / 𝐴)))
4432, 43eqtrd 2150 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴𝑧) / (𝐴 · 𝑧)) = ((1 / 𝑧) − (1 / 𝐴)))
4544fveq2d 5393 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((𝐴𝑧) / (𝐴 · 𝑧))) = (abs‘((1 / 𝑧) − (1 / 𝐴))))
4622, 27subcld 8041 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴𝑧) ∈ ℂ)
4746, 28, 31absdivapd 10935 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((𝐴𝑧) / (𝐴 · 𝑧))) = ((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))))
4845, 47eqtr3d 2152 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((1 / 𝑧) − (1 / 𝐴))) = ((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))))
4946abscld 10921 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) ∈ ℝ)
5021adantr 274 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ∈ ℝ+)
5150rpred 9451 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ∈ ℝ)
5228abscld 10921 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴 · 𝑧)) ∈ ℝ)
536rpred 9451 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ)
5453adantr 274 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝐵 ∈ ℝ)
5552, 54remulcld 7764 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴 · 𝑧)) · 𝐵) ∈ ℝ)
5622, 27abssubd 10933 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) = (abs‘(𝑧𝐴)))
57 simprr 506 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝑧𝐴)) < 𝑇)
5856, 57eqbrtrd 3920 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) < 𝑇)
597adantr 274 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) · 𝐵) ∈ ℝ+)
6059rpred 9451 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) · 𝐵) ∈ ℝ)
6119adantr 274 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) ∈ ℝ+)
6261rpred 9451 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) ∈ ℝ)
6360, 62remulcld 7764 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)) ∈ ℝ)
64 1re 7733 . . . . . . . . . . 11 1 ∈ ℝ
65 min2inf 10972 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ ((abs‘𝐴) · 𝐵) ∈ ℝ) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ≤ ((abs‘𝐴) · 𝐵))
6664, 60, 65sylancr 410 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ≤ ((abs‘𝐴) · 𝐵))
6710adantr 274 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ∈ ℝ)
6867, 60, 61lemul1d 9495 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ≤ ((abs‘𝐴) · 𝐵) ↔ (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2)) ≤ (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2))))
6966, 68mpbid 146 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2)) ≤ (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)))
701, 69eqbrtrid 3933 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ≤ (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)))
7127abscld 10921 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝑧) ∈ ℝ)
7222abscld 10921 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝐴) ∈ ℝ)
7372recnd 7762 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝐴) ∈ ℂ)
74732halvesd 8933 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) / 2) + ((abs‘𝐴) / 2)) = (abs‘𝐴))
7572, 71resubcld 8111 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) − (abs‘𝑧)) ∈ ℝ)
7627, 22subcld 8041 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧𝐴) ∈ ℂ)
7776abscld 10921 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝑧𝐴)) ∈ ℝ)
7856, 77eqeltrd 2194 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) ∈ ℝ)
7922, 27abs2difd 10937 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) − (abs‘𝑧)) ≤ (abs‘(𝐴𝑧)))
80 min1inf 10971 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ ∧ ((abs‘𝐴) · 𝐵) ∈ ℝ) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ≤ 1)
8164, 60, 80sylancr 410 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ≤ 1)
82 1red 7749 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 1 ∈ ℝ)
8367, 82, 61lemul1d 9495 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) ≤ 1 ↔ (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2)) ≤ (1 · ((abs‘𝐴) / 2))))
8481, 83mpbid 146 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2)) ≤ (1 · ((abs‘𝐴) / 2)))
851, 84eqbrtrid 3933 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ≤ (1 · ((abs‘𝐴) / 2)))
8662recnd 7762 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) ∈ ℂ)
8786mulid2d 7752 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (1 · ((abs‘𝐴) / 2)) = ((abs‘𝐴) / 2))
8885, 87breqtrd 3924 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ≤ ((abs‘𝐴) / 2))
8978, 51, 62, 58, 88ltletrd 8153 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) < ((abs‘𝐴) / 2))
9075, 78, 62, 79, 89lelttrd 7855 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) − (abs‘𝑧)) < ((abs‘𝐴) / 2))
9172, 71, 62ltsubadd2d 8273 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) − (abs‘𝑧)) < ((abs‘𝐴) / 2) ↔ (abs‘𝐴) < ((abs‘𝑧) + ((abs‘𝐴) / 2))))
9290, 91mpbid 146 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝐴) < ((abs‘𝑧) + ((abs‘𝐴) / 2)))
9374, 92eqbrtrd 3920 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) / 2) + ((abs‘𝐴) / 2)) < ((abs‘𝑧) + ((abs‘𝐴) / 2)))
9462, 71, 62ltadd1d 8268 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) / 2) < (abs‘𝑧) ↔ (((abs‘𝐴) / 2) + ((abs‘𝐴) / 2)) < ((abs‘𝑧) + ((abs‘𝐴) / 2))))
9593, 94mpbird 166 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) < (abs‘𝑧))
9662, 71, 59, 95ltmul2dd 9508 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)) < (((abs‘𝐴) · 𝐵) · (abs‘𝑧)))
9722, 27absmuld 10934 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴 · 𝑧)) = ((abs‘𝐴) · (abs‘𝑧)))
9897oveq1d 5757 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴 · 𝑧)) · 𝐵) = (((abs‘𝐴) · (abs‘𝑧)) · 𝐵))
9971recnd 7762 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝑧) ∈ ℂ)
10054recnd 7762 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝐵 ∈ ℂ)
10173, 99, 100mul32d 7883 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · (abs‘𝑧)) · 𝐵) = (((abs‘𝐴) · 𝐵) · (abs‘𝑧)))
10298, 101eqtrd 2150 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴 · 𝑧)) · 𝐵) = (((abs‘𝐴) · 𝐵) · (abs‘𝑧)))
10396, 102breqtrrd 3926 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)) < ((abs‘(𝐴 · 𝑧)) · 𝐵))
10451, 63, 55, 70, 103lelttrd 7855 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 < ((abs‘(𝐴 · 𝑧)) · 𝐵))
10549, 51, 55, 58, 104lttrd 7856 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) < ((abs‘(𝐴 · 𝑧)) · 𝐵))
10628, 31absrpclapd 10928 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴 · 𝑧)) ∈ ℝ+)
10749, 54, 106ltdivmuld 9503 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))) < 𝐵 ↔ (abs‘(𝐴𝑧)) < ((abs‘(𝐴 · 𝑧)) · 𝐵)))
108105, 107mpbird 166 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))) < 𝐵)
10948, 108eqbrtrd 3920 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵)
110109expr 372 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0}) → ((abs‘(𝑧𝐴)) < 𝑇 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
111110ralrimiva 2482 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → ∀𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ((abs‘(𝑧𝐴)) < 𝑇 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
112 breq2 3903 . . 3 (𝑦 = 𝑇 → ((abs‘(𝑧𝐴)) < 𝑦 ↔ (abs‘(𝑧𝐴)) < 𝑇))
113112rspceaimv 2771 . 2 ((𝑇 ∈ ℝ+ ∧ ∀𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ((abs‘(𝑧𝐴)) < 𝑇 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵)) → ∃𝑦 ∈ ℝ+𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
11421, 111, 113syl2anc 408 1 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 947   = wceq 1316  wcel 1465  wral 2393  wrex 2394  {crab 2397  {cpr 3498   class class class wbr 3899  cfv 5093  (class class class)co 5742  infcinf 6838  cc 7586  cr 7587  0cc0 7588  1c1 7589   + caddc 7591   · cmul 7593   < clt 7768  cle 7769  cmin 7901   # cap 8311   / cdiv 8400  2c2 8739  +crp 9409  abscabs 10737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706  ax-arch 7707  ax-caucvg 7708
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-isom 5102  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-frec 6256  df-sup 6839  df-inf 6840  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8305  df-ap 8312  df-div 8401  df-inn 8689  df-2 8747  df-3 8748  df-4 8749  df-n0 8946  df-z 9023  df-uz 9295  df-rp 9410  df-seqfrec 10187  df-exp 10261  df-cj 10582  df-re 10583  df-im 10584  df-rsqrt 10738  df-abs 10739
This theorem is referenced by:  divcnap  12651  cdivcncfap  12683
  Copyright terms: Public domain W3C validator