ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemp1rp GIF version

Theorem resqrexlemp1rp 10778
Description: Lemma for resqrex 10798. Applying the recursion rule yields a positive real (expressed in a way that will help apply seqf 10234 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
Hypotheses
Ref Expression
resqrexlem1arp.a (𝜑𝐴 ∈ ℝ)
resqrexlem1arp.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemp1rp ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝐶) ∈ ℝ+)
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧   𝑦,𝐵,𝑧   𝑦,𝐶,𝑧

Proof of Theorem resqrexlemp1rp
StepHypRef Expression
1 eqidd 2140 . . 3 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)) = (𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)))
2 id 19 . . . . . 6 (𝑦 = 𝐵𝑦 = 𝐵)
3 oveq2 5782 . . . . . 6 (𝑦 = 𝐵 → (𝐴 / 𝑦) = (𝐴 / 𝐵))
42, 3oveq12d 5792 . . . . 5 (𝑦 = 𝐵 → (𝑦 + (𝐴 / 𝑦)) = (𝐵 + (𝐴 / 𝐵)))
54oveq1d 5789 . . . 4 (𝑦 = 𝐵 → ((𝑦 + (𝐴 / 𝑦)) / 2) = ((𝐵 + (𝐴 / 𝐵)) / 2))
65ad2antrl 481 . . 3 (((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) ∧ (𝑦 = 𝐵𝑧 = 𝐶)) → ((𝑦 + (𝐴 / 𝑦)) / 2) = ((𝐵 + (𝐴 / 𝐵)) / 2))
7 simprl 520 . . 3 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 𝐵 ∈ ℝ+)
8 simprr 521 . . 3 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 𝐶 ∈ ℝ+)
97rpred 9483 . . . . 5 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 𝐵 ∈ ℝ)
10 resqrexlem1arp.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
1110adantr 274 . . . . . 6 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 𝐴 ∈ ℝ)
1211, 7rerpdivcld 9515 . . . . 5 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐴 / 𝐵) ∈ ℝ)
139, 12readdcld 7795 . . . 4 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 + (𝐴 / 𝐵)) ∈ ℝ)
1413rehalfcld 8966 . . 3 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → ((𝐵 + (𝐴 / 𝐵)) / 2) ∈ ℝ)
151, 6, 7, 8, 14ovmpod 5898 . 2 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝐶) = ((𝐵 + (𝐴 / 𝐵)) / 2))
167rpgt0d 9486 . . . . 5 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 0 < 𝐵)
17 resqrexlem1arp.agt0 . . . . . . 7 (𝜑 → 0 ≤ 𝐴)
1817adantr 274 . . . . . 6 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 0 ≤ 𝐴)
1911, 7, 18divge0d 9524 . . . . 5 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 0 ≤ (𝐴 / 𝐵))
20 addgtge0 8212 . . . . 5 (((𝐵 ∈ ℝ ∧ (𝐴 / 𝐵) ∈ ℝ) ∧ (0 < 𝐵 ∧ 0 ≤ (𝐴 / 𝐵))) → 0 < (𝐵 + (𝐴 / 𝐵)))
219, 12, 16, 19, 20syl22anc 1217 . . . 4 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 0 < (𝐵 + (𝐴 / 𝐵)))
2213, 21elrpd 9481 . . 3 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 + (𝐴 / 𝐵)) ∈ ℝ+)
2322rphalfcld 9496 . 2 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → ((𝐵 + (𝐴 / 𝐵)) / 2) ∈ ℝ+)
2415, 23eqeltrd 2216 1 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝐶) ∈ ℝ+)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480   class class class wbr 3929  (class class class)co 5774  cmpo 5776  cr 7619  0cc0 7620   + caddc 7623   < clt 7800  cle 7801   / cdiv 8432  2c2 8771  +crp 9441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-2 8779  df-rp 9442
This theorem is referenced by:  resqrexlemf  10779  resqrexlemf1  10780  resqrexlemfp1  10781
  Copyright terms: Public domain W3C validator