ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemp1rp GIF version

Theorem resqrexlemp1rp 11017
Description: Lemma for resqrex 11037. Applying the recursion rule yields a positive real (expressed in a way that will help apply seqf 10463 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
Hypotheses
Ref Expression
resqrexlem1arp.a (𝜑𝐴 ∈ ℝ)
resqrexlem1arp.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemp1rp ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝐶) ∈ ℝ+)
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧   𝑦,𝐵,𝑧   𝑦,𝐶,𝑧

Proof of Theorem resqrexlemp1rp
StepHypRef Expression
1 eqidd 2178 . . 3 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)) = (𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)))
2 id 19 . . . . . 6 (𝑦 = 𝐵𝑦 = 𝐵)
3 oveq2 5885 . . . . . 6 (𝑦 = 𝐵 → (𝐴 / 𝑦) = (𝐴 / 𝐵))
42, 3oveq12d 5895 . . . . 5 (𝑦 = 𝐵 → (𝑦 + (𝐴 / 𝑦)) = (𝐵 + (𝐴 / 𝐵)))
54oveq1d 5892 . . . 4 (𝑦 = 𝐵 → ((𝑦 + (𝐴 / 𝑦)) / 2) = ((𝐵 + (𝐴 / 𝐵)) / 2))
65ad2antrl 490 . . 3 (((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) ∧ (𝑦 = 𝐵𝑧 = 𝐶)) → ((𝑦 + (𝐴 / 𝑦)) / 2) = ((𝐵 + (𝐴 / 𝐵)) / 2))
7 simprl 529 . . 3 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 𝐵 ∈ ℝ+)
8 simprr 531 . . 3 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 𝐶 ∈ ℝ+)
97rpred 9698 . . . . 5 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 𝐵 ∈ ℝ)
10 resqrexlem1arp.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
1110adantr 276 . . . . . 6 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 𝐴 ∈ ℝ)
1211, 7rerpdivcld 9730 . . . . 5 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐴 / 𝐵) ∈ ℝ)
139, 12readdcld 7989 . . . 4 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 + (𝐴 / 𝐵)) ∈ ℝ)
1413rehalfcld 9167 . . 3 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → ((𝐵 + (𝐴 / 𝐵)) / 2) ∈ ℝ)
151, 6, 7, 8, 14ovmpod 6004 . 2 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝐶) = ((𝐵 + (𝐴 / 𝐵)) / 2))
167rpgt0d 9701 . . . . 5 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 0 < 𝐵)
17 resqrexlem1arp.agt0 . . . . . . 7 (𝜑 → 0 ≤ 𝐴)
1817adantr 276 . . . . . 6 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 0 ≤ 𝐴)
1911, 7, 18divge0d 9739 . . . . 5 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 0 ≤ (𝐴 / 𝐵))
20 addgtge0 8409 . . . . 5 (((𝐵 ∈ ℝ ∧ (𝐴 / 𝐵) ∈ ℝ) ∧ (0 < 𝐵 ∧ 0 ≤ (𝐴 / 𝐵))) → 0 < (𝐵 + (𝐴 / 𝐵)))
219, 12, 16, 19, 20syl22anc 1239 . . . 4 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 0 < (𝐵 + (𝐴 / 𝐵)))
2213, 21elrpd 9695 . . 3 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 + (𝐴 / 𝐵)) ∈ ℝ+)
2322rphalfcld 9711 . 2 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → ((𝐵 + (𝐴 / 𝐵)) / 2) ∈ ℝ+)
2415, 23eqeltrd 2254 1 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝐶) ∈ ℝ+)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148   class class class wbr 4005  (class class class)co 5877  cmpo 5879  cr 7812  0cc0 7813   + caddc 7816   < clt 7994  cle 7995   / cdiv 8631  2c2 8972  +crp 9655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-2 8980  df-rp 9656
This theorem is referenced by:  resqrexlemf  11018  resqrexlemf1  11019  resqrexlemfp1  11020
  Copyright terms: Public domain W3C validator