ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemp1rp GIF version

Theorem resqrexlemp1rp 11317
Description: Lemma for resqrex 11337. Applying the recursion rule yields a positive real (expressed in a way that will help apply seqf 10609 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
Hypotheses
Ref Expression
resqrexlem1arp.a (𝜑𝐴 ∈ ℝ)
resqrexlem1arp.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemp1rp ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝐶) ∈ ℝ+)
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧   𝑦,𝐵,𝑧   𝑦,𝐶,𝑧

Proof of Theorem resqrexlemp1rp
StepHypRef Expression
1 eqidd 2206 . . 3 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)) = (𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)))
2 id 19 . . . . . 6 (𝑦 = 𝐵𝑦 = 𝐵)
3 oveq2 5952 . . . . . 6 (𝑦 = 𝐵 → (𝐴 / 𝑦) = (𝐴 / 𝐵))
42, 3oveq12d 5962 . . . . 5 (𝑦 = 𝐵 → (𝑦 + (𝐴 / 𝑦)) = (𝐵 + (𝐴 / 𝐵)))
54oveq1d 5959 . . . 4 (𝑦 = 𝐵 → ((𝑦 + (𝐴 / 𝑦)) / 2) = ((𝐵 + (𝐴 / 𝐵)) / 2))
65ad2antrl 490 . . 3 (((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) ∧ (𝑦 = 𝐵𝑧 = 𝐶)) → ((𝑦 + (𝐴 / 𝑦)) / 2) = ((𝐵 + (𝐴 / 𝐵)) / 2))
7 simprl 529 . . 3 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 𝐵 ∈ ℝ+)
8 simprr 531 . . 3 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 𝐶 ∈ ℝ+)
97rpred 9818 . . . . 5 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 𝐵 ∈ ℝ)
10 resqrexlem1arp.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
1110adantr 276 . . . . . 6 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 𝐴 ∈ ℝ)
1211, 7rerpdivcld 9850 . . . . 5 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐴 / 𝐵) ∈ ℝ)
139, 12readdcld 8102 . . . 4 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 + (𝐴 / 𝐵)) ∈ ℝ)
1413rehalfcld 9284 . . 3 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → ((𝐵 + (𝐴 / 𝐵)) / 2) ∈ ℝ)
151, 6, 7, 8, 14ovmpod 6073 . 2 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝐶) = ((𝐵 + (𝐴 / 𝐵)) / 2))
167rpgt0d 9821 . . . . 5 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 0 < 𝐵)
17 resqrexlem1arp.agt0 . . . . . . 7 (𝜑 → 0 ≤ 𝐴)
1817adantr 276 . . . . . 6 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 0 ≤ 𝐴)
1911, 7, 18divge0d 9859 . . . . 5 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 0 ≤ (𝐴 / 𝐵))
20 addgtge0 8523 . . . . 5 (((𝐵 ∈ ℝ ∧ (𝐴 / 𝐵) ∈ ℝ) ∧ (0 < 𝐵 ∧ 0 ≤ (𝐴 / 𝐵))) → 0 < (𝐵 + (𝐴 / 𝐵)))
219, 12, 16, 19, 20syl22anc 1251 . . . 4 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 0 < (𝐵 + (𝐴 / 𝐵)))
2213, 21elrpd 9815 . . 3 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 + (𝐴 / 𝐵)) ∈ ℝ+)
2322rphalfcld 9831 . 2 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → ((𝐵 + (𝐴 / 𝐵)) / 2) ∈ ℝ+)
2415, 23eqeltrd 2282 1 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝐶) ∈ ℝ+)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2176   class class class wbr 4044  (class class class)co 5944  cmpo 5946  cr 7924  0cc0 7925   + caddc 7928   < clt 8107  cle 8108   / cdiv 8745  2c2 9087  +crp 9775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-2 9095  df-rp 9776
This theorem is referenced by:  resqrexlemf  11318  resqrexlemf1  11319  resqrexlemfp1  11320
  Copyright terms: Public domain W3C validator