| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resqrexlemp1rp | GIF version | ||
| Description: Lemma for resqrex 11208. Applying the recursion rule yields a positive real (expressed in a way that will help apply seqf 10573 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.) |
| Ref | Expression |
|---|---|
| resqrexlem1arp.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| resqrexlem1arp.agt0 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| Ref | Expression |
|---|---|
| resqrexlemp1rp | ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝐶) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2197 | . . 3 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)) = (𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))) | |
| 2 | id 19 | . . . . . 6 ⊢ (𝑦 = 𝐵 → 𝑦 = 𝐵) | |
| 3 | oveq2 5933 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝐴 / 𝑦) = (𝐴 / 𝐵)) | |
| 4 | 2, 3 | oveq12d 5943 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 + (𝐴 / 𝑦)) = (𝐵 + (𝐴 / 𝐵))) |
| 5 | 4 | oveq1d 5940 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝑦 + (𝐴 / 𝑦)) / 2) = ((𝐵 + (𝐴 / 𝐵)) / 2)) |
| 6 | 5 | ad2antrl 490 | . . 3 ⊢ (((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) ∧ (𝑦 = 𝐵 ∧ 𝑧 = 𝐶)) → ((𝑦 + (𝐴 / 𝑦)) / 2) = ((𝐵 + (𝐴 / 𝐵)) / 2)) |
| 7 | simprl 529 | . . 3 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → 𝐵 ∈ ℝ+) | |
| 8 | simprr 531 | . . 3 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → 𝐶 ∈ ℝ+) | |
| 9 | 7 | rpred 9788 | . . . . 5 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → 𝐵 ∈ ℝ) |
| 10 | resqrexlem1arp.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 11 | 10 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → 𝐴 ∈ ℝ) |
| 12 | 11, 7 | rerpdivcld 9820 | . . . . 5 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐴 / 𝐵) ∈ ℝ) |
| 13 | 9, 12 | readdcld 8073 | . . . 4 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 + (𝐴 / 𝐵)) ∈ ℝ) |
| 14 | 13 | rehalfcld 9255 | . . 3 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → ((𝐵 + (𝐴 / 𝐵)) / 2) ∈ ℝ) |
| 15 | 1, 6, 7, 8, 14 | ovmpod 6054 | . 2 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝐶) = ((𝐵 + (𝐴 / 𝐵)) / 2)) |
| 16 | 7 | rpgt0d 9791 | . . . . 5 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → 0 < 𝐵) |
| 17 | resqrexlem1arp.agt0 | . . . . . . 7 ⊢ (𝜑 → 0 ≤ 𝐴) | |
| 18 | 17 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → 0 ≤ 𝐴) |
| 19 | 11, 7, 18 | divge0d 9829 | . . . . 5 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → 0 ≤ (𝐴 / 𝐵)) |
| 20 | addgtge0 8494 | . . . . 5 ⊢ (((𝐵 ∈ ℝ ∧ (𝐴 / 𝐵) ∈ ℝ) ∧ (0 < 𝐵 ∧ 0 ≤ (𝐴 / 𝐵))) → 0 < (𝐵 + (𝐴 / 𝐵))) | |
| 21 | 9, 12, 16, 19, 20 | syl22anc 1250 | . . . 4 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → 0 < (𝐵 + (𝐴 / 𝐵))) |
| 22 | 13, 21 | elrpd 9785 | . . 3 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 + (𝐴 / 𝐵)) ∈ ℝ+) |
| 23 | 22 | rphalfcld 9801 | . 2 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → ((𝐵 + (𝐴 / 𝐵)) / 2) ∈ ℝ+) |
| 24 | 15, 23 | eqeltrd 2273 | 1 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝐶) ∈ ℝ+) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 class class class wbr 4034 (class class class)co 5925 ∈ cmpo 5927 ℝcr 7895 0cc0 7896 + caddc 7899 < clt 8078 ≤ cle 8079 / cdiv 8716 2c2 9058 ℝ+crp 9745 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-2 9066 df-rp 9746 |
| This theorem is referenced by: resqrexlemf 11189 resqrexlemf1 11190 resqrexlemfp1 11191 |
| Copyright terms: Public domain | W3C validator |