ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemp1rp GIF version

Theorem resqrexlemp1rp 11402
Description: Lemma for resqrex 11422. Applying the recursion rule yields a positive real (expressed in a way that will help apply seqf 10641 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
Hypotheses
Ref Expression
resqrexlem1arp.a (𝜑𝐴 ∈ ℝ)
resqrexlem1arp.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemp1rp ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝐶) ∈ ℝ+)
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧   𝑦,𝐵,𝑧   𝑦,𝐶,𝑧

Proof of Theorem resqrexlemp1rp
StepHypRef Expression
1 eqidd 2207 . . 3 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)) = (𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)))
2 id 19 . . . . . 6 (𝑦 = 𝐵𝑦 = 𝐵)
3 oveq2 5970 . . . . . 6 (𝑦 = 𝐵 → (𝐴 / 𝑦) = (𝐴 / 𝐵))
42, 3oveq12d 5980 . . . . 5 (𝑦 = 𝐵 → (𝑦 + (𝐴 / 𝑦)) = (𝐵 + (𝐴 / 𝐵)))
54oveq1d 5977 . . . 4 (𝑦 = 𝐵 → ((𝑦 + (𝐴 / 𝑦)) / 2) = ((𝐵 + (𝐴 / 𝐵)) / 2))
65ad2antrl 490 . . 3 (((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) ∧ (𝑦 = 𝐵𝑧 = 𝐶)) → ((𝑦 + (𝐴 / 𝑦)) / 2) = ((𝐵 + (𝐴 / 𝐵)) / 2))
7 simprl 529 . . 3 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 𝐵 ∈ ℝ+)
8 simprr 531 . . 3 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 𝐶 ∈ ℝ+)
97rpred 9848 . . . . 5 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 𝐵 ∈ ℝ)
10 resqrexlem1arp.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
1110adantr 276 . . . . . 6 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 𝐴 ∈ ℝ)
1211, 7rerpdivcld 9880 . . . . 5 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐴 / 𝐵) ∈ ℝ)
139, 12readdcld 8132 . . . 4 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 + (𝐴 / 𝐵)) ∈ ℝ)
1413rehalfcld 9314 . . 3 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → ((𝐵 + (𝐴 / 𝐵)) / 2) ∈ ℝ)
151, 6, 7, 8, 14ovmpod 6091 . 2 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝐶) = ((𝐵 + (𝐴 / 𝐵)) / 2))
167rpgt0d 9851 . . . . 5 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 0 < 𝐵)
17 resqrexlem1arp.agt0 . . . . . . 7 (𝜑 → 0 ≤ 𝐴)
1817adantr 276 . . . . . 6 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 0 ≤ 𝐴)
1911, 7, 18divge0d 9889 . . . . 5 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 0 ≤ (𝐴 / 𝐵))
20 addgtge0 8553 . . . . 5 (((𝐵 ∈ ℝ ∧ (𝐴 / 𝐵) ∈ ℝ) ∧ (0 < 𝐵 ∧ 0 ≤ (𝐴 / 𝐵))) → 0 < (𝐵 + (𝐴 / 𝐵)))
219, 12, 16, 19, 20syl22anc 1251 . . . 4 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 0 < (𝐵 + (𝐴 / 𝐵)))
2213, 21elrpd 9845 . . 3 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 + (𝐴 / 𝐵)) ∈ ℝ+)
2322rphalfcld 9861 . 2 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → ((𝐵 + (𝐴 / 𝐵)) / 2) ∈ ℝ+)
2415, 23eqeltrd 2283 1 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝐶) ∈ ℝ+)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177   class class class wbr 4054  (class class class)co 5962  cmpo 5964  cr 7954  0cc0 7955   + caddc 7958   < clt 8137  cle 8138   / cdiv 8775  2c2 9117  +crp 9805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072  ax-pre-mulext 8073
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-id 4353  df-po 4356  df-iso 4357  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-iota 5246  df-fun 5287  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-reap 8678  df-ap 8685  df-div 8776  df-2 9125  df-rp 9806
This theorem is referenced by:  resqrexlemf  11403  resqrexlemf1  11404  resqrexlemfp1  11405
  Copyright terms: Public domain W3C validator