ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemp1rp GIF version

Theorem resqrexlemp1rp 11512
Description: Lemma for resqrex 11532. Applying the recursion rule yields a positive real (expressed in a way that will help apply seqf 10681 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
Hypotheses
Ref Expression
resqrexlem1arp.a (𝜑𝐴 ∈ ℝ)
resqrexlem1arp.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemp1rp ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝐶) ∈ ℝ+)
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧   𝑦,𝐵,𝑧   𝑦,𝐶,𝑧

Proof of Theorem resqrexlemp1rp
StepHypRef Expression
1 eqidd 2230 . . 3 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)) = (𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)))
2 id 19 . . . . . 6 (𝑦 = 𝐵𝑦 = 𝐵)
3 oveq2 6008 . . . . . 6 (𝑦 = 𝐵 → (𝐴 / 𝑦) = (𝐴 / 𝐵))
42, 3oveq12d 6018 . . . . 5 (𝑦 = 𝐵 → (𝑦 + (𝐴 / 𝑦)) = (𝐵 + (𝐴 / 𝐵)))
54oveq1d 6015 . . . 4 (𝑦 = 𝐵 → ((𝑦 + (𝐴 / 𝑦)) / 2) = ((𝐵 + (𝐴 / 𝐵)) / 2))
65ad2antrl 490 . . 3 (((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) ∧ (𝑦 = 𝐵𝑧 = 𝐶)) → ((𝑦 + (𝐴 / 𝑦)) / 2) = ((𝐵 + (𝐴 / 𝐵)) / 2))
7 simprl 529 . . 3 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 𝐵 ∈ ℝ+)
8 simprr 531 . . 3 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 𝐶 ∈ ℝ+)
97rpred 9888 . . . . 5 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 𝐵 ∈ ℝ)
10 resqrexlem1arp.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
1110adantr 276 . . . . . 6 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 𝐴 ∈ ℝ)
1211, 7rerpdivcld 9920 . . . . 5 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐴 / 𝐵) ∈ ℝ)
139, 12readdcld 8172 . . . 4 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 + (𝐴 / 𝐵)) ∈ ℝ)
1413rehalfcld 9354 . . 3 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → ((𝐵 + (𝐴 / 𝐵)) / 2) ∈ ℝ)
151, 6, 7, 8, 14ovmpod 6131 . 2 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝐶) = ((𝐵 + (𝐴 / 𝐵)) / 2))
167rpgt0d 9891 . . . . 5 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 0 < 𝐵)
17 resqrexlem1arp.agt0 . . . . . . 7 (𝜑 → 0 ≤ 𝐴)
1817adantr 276 . . . . . 6 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 0 ≤ 𝐴)
1911, 7, 18divge0d 9929 . . . . 5 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 0 ≤ (𝐴 / 𝐵))
20 addgtge0 8593 . . . . 5 (((𝐵 ∈ ℝ ∧ (𝐴 / 𝐵) ∈ ℝ) ∧ (0 < 𝐵 ∧ 0 ≤ (𝐴 / 𝐵))) → 0 < (𝐵 + (𝐴 / 𝐵)))
219, 12, 16, 19, 20syl22anc 1272 . . . 4 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → 0 < (𝐵 + (𝐴 / 𝐵)))
2213, 21elrpd 9885 . . 3 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 + (𝐴 / 𝐵)) ∈ ℝ+)
2322rphalfcld 9901 . 2 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → ((𝐵 + (𝐴 / 𝐵)) / 2) ∈ ℝ+)
2415, 23eqeltrd 2306 1 ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝐶) ∈ ℝ+)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200   class class class wbr 4082  (class class class)co 6000  cmpo 6002  cr 7994  0cc0 7995   + caddc 7998   < clt 8177  cle 8178   / cdiv 8815  2c2 9157  +crp 9845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-2 9165  df-rp 9846
This theorem is referenced by:  resqrexlemf  11513  resqrexlemf1  11514  resqrexlemfp1  11515
  Copyright terms: Public domain W3C validator