![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resqrexlemp1rp | GIF version |
Description: Lemma for resqrex 11173. Applying the recursion rule yields a positive real (expressed in a way that will help apply seqf 10538 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.) |
Ref | Expression |
---|---|
resqrexlem1arp.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
resqrexlem1arp.agt0 | ⊢ (𝜑 → 0 ≤ 𝐴) |
Ref | Expression |
---|---|
resqrexlemp1rp | ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝐶) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2194 | . . 3 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)) = (𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))) | |
2 | id 19 | . . . . . 6 ⊢ (𝑦 = 𝐵 → 𝑦 = 𝐵) | |
3 | oveq2 5927 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝐴 / 𝑦) = (𝐴 / 𝐵)) | |
4 | 2, 3 | oveq12d 5937 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 + (𝐴 / 𝑦)) = (𝐵 + (𝐴 / 𝐵))) |
5 | 4 | oveq1d 5934 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝑦 + (𝐴 / 𝑦)) / 2) = ((𝐵 + (𝐴 / 𝐵)) / 2)) |
6 | 5 | ad2antrl 490 | . . 3 ⊢ (((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) ∧ (𝑦 = 𝐵 ∧ 𝑧 = 𝐶)) → ((𝑦 + (𝐴 / 𝑦)) / 2) = ((𝐵 + (𝐴 / 𝐵)) / 2)) |
7 | simprl 529 | . . 3 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → 𝐵 ∈ ℝ+) | |
8 | simprr 531 | . . 3 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → 𝐶 ∈ ℝ+) | |
9 | 7 | rpred 9765 | . . . . 5 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → 𝐵 ∈ ℝ) |
10 | resqrexlem1arp.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
11 | 10 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → 𝐴 ∈ ℝ) |
12 | 11, 7 | rerpdivcld 9797 | . . . . 5 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐴 / 𝐵) ∈ ℝ) |
13 | 9, 12 | readdcld 8051 | . . . 4 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 + (𝐴 / 𝐵)) ∈ ℝ) |
14 | 13 | rehalfcld 9232 | . . 3 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → ((𝐵 + (𝐴 / 𝐵)) / 2) ∈ ℝ) |
15 | 1, 6, 7, 8, 14 | ovmpod 6047 | . 2 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝐶) = ((𝐵 + (𝐴 / 𝐵)) / 2)) |
16 | 7 | rpgt0d 9768 | . . . . 5 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → 0 < 𝐵) |
17 | resqrexlem1arp.agt0 | . . . . . . 7 ⊢ (𝜑 → 0 ≤ 𝐴) | |
18 | 17 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → 0 ≤ 𝐴) |
19 | 11, 7, 18 | divge0d 9806 | . . . . 5 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → 0 ≤ (𝐴 / 𝐵)) |
20 | addgtge0 8471 | . . . . 5 ⊢ (((𝐵 ∈ ℝ ∧ (𝐴 / 𝐵) ∈ ℝ) ∧ (0 < 𝐵 ∧ 0 ≤ (𝐴 / 𝐵))) → 0 < (𝐵 + (𝐴 / 𝐵))) | |
21 | 9, 12, 16, 19, 20 | syl22anc 1250 | . . . 4 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → 0 < (𝐵 + (𝐴 / 𝐵))) |
22 | 13, 21 | elrpd 9762 | . . 3 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 + (𝐴 / 𝐵)) ∈ ℝ+) |
23 | 22 | rphalfcld 9778 | . 2 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → ((𝐵 + (𝐴 / 𝐵)) / 2) ∈ ℝ+) |
24 | 15, 23 | eqeltrd 2270 | 1 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝐶) ∈ ℝ+) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 (class class class)co 5919 ∈ cmpo 5921 ℝcr 7873 0cc0 7874 + caddc 7877 < clt 8056 ≤ cle 8057 / cdiv 8693 2c2 9035 ℝ+crp 9722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-po 4328 df-iso 4329 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-2 9043 df-rp 9723 |
This theorem is referenced by: resqrexlemf 11154 resqrexlemf1 11155 resqrexlemfp1 11156 |
Copyright terms: Public domain | W3C validator |