![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resqrexlemp1rp | GIF version |
Description: Lemma for resqrex 11037. Applying the recursion rule yields a positive real (expressed in a way that will help apply seqf 10463 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.) |
Ref | Expression |
---|---|
resqrexlem1arp.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
resqrexlem1arp.agt0 | ⊢ (𝜑 → 0 ≤ 𝐴) |
Ref | Expression |
---|---|
resqrexlemp1rp | ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝐶) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2178 | . . 3 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)) = (𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))) | |
2 | id 19 | . . . . . 6 ⊢ (𝑦 = 𝐵 → 𝑦 = 𝐵) | |
3 | oveq2 5885 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝐴 / 𝑦) = (𝐴 / 𝐵)) | |
4 | 2, 3 | oveq12d 5895 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 + (𝐴 / 𝑦)) = (𝐵 + (𝐴 / 𝐵))) |
5 | 4 | oveq1d 5892 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝑦 + (𝐴 / 𝑦)) / 2) = ((𝐵 + (𝐴 / 𝐵)) / 2)) |
6 | 5 | ad2antrl 490 | . . 3 ⊢ (((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) ∧ (𝑦 = 𝐵 ∧ 𝑧 = 𝐶)) → ((𝑦 + (𝐴 / 𝑦)) / 2) = ((𝐵 + (𝐴 / 𝐵)) / 2)) |
7 | simprl 529 | . . 3 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → 𝐵 ∈ ℝ+) | |
8 | simprr 531 | . . 3 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → 𝐶 ∈ ℝ+) | |
9 | 7 | rpred 9698 | . . . . 5 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → 𝐵 ∈ ℝ) |
10 | resqrexlem1arp.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
11 | 10 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → 𝐴 ∈ ℝ) |
12 | 11, 7 | rerpdivcld 9730 | . . . . 5 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐴 / 𝐵) ∈ ℝ) |
13 | 9, 12 | readdcld 7989 | . . . 4 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 + (𝐴 / 𝐵)) ∈ ℝ) |
14 | 13 | rehalfcld 9167 | . . 3 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → ((𝐵 + (𝐴 / 𝐵)) / 2) ∈ ℝ) |
15 | 1, 6, 7, 8, 14 | ovmpod 6004 | . 2 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝐶) = ((𝐵 + (𝐴 / 𝐵)) / 2)) |
16 | 7 | rpgt0d 9701 | . . . . 5 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → 0 < 𝐵) |
17 | resqrexlem1arp.agt0 | . . . . . . 7 ⊢ (𝜑 → 0 ≤ 𝐴) | |
18 | 17 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → 0 ≤ 𝐴) |
19 | 11, 7, 18 | divge0d 9739 | . . . . 5 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → 0 ≤ (𝐴 / 𝐵)) |
20 | addgtge0 8409 | . . . . 5 ⊢ (((𝐵 ∈ ℝ ∧ (𝐴 / 𝐵) ∈ ℝ) ∧ (0 < 𝐵 ∧ 0 ≤ (𝐴 / 𝐵))) → 0 < (𝐵 + (𝐴 / 𝐵))) | |
21 | 9, 12, 16, 19, 20 | syl22anc 1239 | . . . 4 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → 0 < (𝐵 + (𝐴 / 𝐵))) |
22 | 13, 21 | elrpd 9695 | . . 3 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 + (𝐴 / 𝐵)) ∈ ℝ+) |
23 | 22 | rphalfcld 9711 | . 2 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → ((𝐵 + (𝐴 / 𝐵)) / 2) ∈ ℝ+) |
24 | 15, 23 | eqeltrd 2254 | 1 ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝐶) ∈ ℝ+) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 class class class wbr 4005 (class class class)co 5877 ∈ cmpo 5879 ℝcr 7812 0cc0 7813 + caddc 7816 < clt 7994 ≤ cle 7995 / cdiv 8631 2c2 8972 ℝ+crp 9655 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-pre-mulext 7931 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-po 4298 df-iso 4299 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 df-div 8632 df-2 8980 df-rp 9656 |
This theorem is referenced by: resqrexlemf 11018 resqrexlemf1 11019 resqrexlemfp1 11020 |
Copyright terms: Public domain | W3C validator |