![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fsumlt | GIF version |
Description: If every term in one finite sum is less than the corresponding term in another, then the first sum is less than the second. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Jun-2014.) |
Ref | Expression |
---|---|
fsumlt.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fsumlt.2 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
fsumlt.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
fsumlt.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) |
fsumlt.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 < 𝐶) |
Ref | Expression |
---|---|
fsumlt | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 < Σ𝑘 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumlt.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
2 | fsumlt.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
3 | fsumlt.5 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 < 𝐶) | |
4 | fsumlt.3 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
5 | fsumlt.4 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) | |
6 | difrp 9694 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 ↔ (𝐶 − 𝐵) ∈ ℝ+)) | |
7 | 4, 5, 6 | syl2anc 411 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 < 𝐶 ↔ (𝐶 − 𝐵) ∈ ℝ+)) |
8 | 3, 7 | mpbid 147 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐶 − 𝐵) ∈ ℝ+) |
9 | 1, 2, 8 | fsumrpcl 11414 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 (𝐶 − 𝐵) ∈ ℝ+) |
10 | 9 | rpgt0d 9701 | . . 3 ⊢ (𝜑 → 0 < Σ𝑘 ∈ 𝐴 (𝐶 − 𝐵)) |
11 | 5 | recnd 7988 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
12 | 4 | recnd 7988 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
13 | 1, 11, 12 | fsumsub 11462 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 (𝐶 − 𝐵) = (Σ𝑘 ∈ 𝐴 𝐶 − Σ𝑘 ∈ 𝐴 𝐵)) |
14 | 10, 13 | breqtrd 4031 | . 2 ⊢ (𝜑 → 0 < (Σ𝑘 ∈ 𝐴 𝐶 − Σ𝑘 ∈ 𝐴 𝐵)) |
15 | 1, 4 | fsumrecl 11411 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℝ) |
16 | 1, 5 | fsumrecl 11411 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 ∈ ℝ) |
17 | 15, 16 | posdifd 8491 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 < Σ𝑘 ∈ 𝐴 𝐶 ↔ 0 < (Σ𝑘 ∈ 𝐴 𝐶 − Σ𝑘 ∈ 𝐴 𝐵))) |
18 | 14, 17 | mpbird 167 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 < Σ𝑘 ∈ 𝐴 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2148 ≠ wne 2347 ∅c0 3424 class class class wbr 4005 (class class class)co 5877 Fincfn 6742 ℝcr 7812 0cc0 7813 < clt 7994 − cmin 8130 ℝ+crp 9655 Σcsu 11363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-pre-mulext 7931 ax-arch 7932 ax-caucvg 7933 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-isom 5227 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-irdg 6373 df-frec 6394 df-1o 6419 df-oadd 6423 df-er 6537 df-en 6743 df-dom 6744 df-fin 6745 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 df-div 8632 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-n0 9179 df-z 9256 df-uz 9531 df-q 9622 df-rp 9656 df-fz 10011 df-fzo 10145 df-seqfrec 10448 df-exp 10522 df-ihash 10758 df-cj 10853 df-re 10854 df-im 10855 df-rsqrt 11009 df-abs 11010 df-clim 11289 df-sumdc 11364 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |