| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodvscad | GIF version | ||
| Description: The scalar product operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 7-Feb-2023.) |
| Ref | Expression |
|---|---|
| lvecfn.w | ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) |
| lmodstr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| lmodstr.g | ⊢ (𝜑 → + ∈ 𝑋) |
| lmodstr.s | ⊢ (𝜑 → 𝐹 ∈ 𝑌) |
| lmodstr.m | ⊢ (𝜑 → · ∈ 𝑍) |
| Ref | Expression |
|---|---|
| lmodvscad | ⊢ (𝜑 → · = ( ·𝑠 ‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vscaslid 13162 | . 2 ⊢ ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ) | |
| 2 | lvecfn.w | . . 3 ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) | |
| 3 | lmodstr.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 4 | lmodstr.g | . . 3 ⊢ (𝜑 → + ∈ 𝑋) | |
| 5 | lmodstr.s | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑌) | |
| 6 | lmodstr.m | . . 3 ⊢ (𝜑 → · ∈ 𝑍) | |
| 7 | 2, 3, 4, 5, 6 | lmodstrd 13163 | . 2 ⊢ (𝜑 → 𝑊 Struct 〈1, 6〉) |
| 8 | 1 | simpri 113 | . . . . 5 ⊢ ( ·𝑠 ‘ndx) ∈ ℕ |
| 9 | opexg 4293 | . . . . 5 ⊢ ((( ·𝑠 ‘ndx) ∈ ℕ ∧ · ∈ 𝑍) → 〈( ·𝑠 ‘ndx), · 〉 ∈ V) | |
| 10 | 8, 6, 9 | sylancr 414 | . . . 4 ⊢ (𝜑 → 〈( ·𝑠 ‘ndx), · 〉 ∈ V) |
| 11 | snidg 3675 | . . . 4 ⊢ (〈( ·𝑠 ‘ndx), · 〉 ∈ V → 〈( ·𝑠 ‘ndx), · 〉 ∈ {〈( ·𝑠 ‘ndx), · 〉}) | |
| 12 | elun2 3352 | . . . 4 ⊢ (〈( ·𝑠 ‘ndx), · 〉 ∈ {〈( ·𝑠 ‘ndx), · 〉} → 〈( ·𝑠 ‘ndx), · 〉 ∈ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉})) | |
| 13 | 10, 11, 12 | 3syl 17 | . . 3 ⊢ (𝜑 → 〈( ·𝑠 ‘ndx), · 〉 ∈ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉})) |
| 14 | 13, 2 | eleqtrrdi 2303 | . 2 ⊢ (𝜑 → 〈( ·𝑠 ‘ndx), · 〉 ∈ 𝑊) |
| 15 | 1, 7, 6, 14 | opelstrsl 13113 | 1 ⊢ (𝜑 → · = ( ·𝑠 ‘𝑊)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 Vcvv 2779 ∪ cun 3175 {csn 3646 {ctp 3648 〈cop 3649 ‘cfv 5294 1c1 7968 ℕcn 9078 6c6 9133 ndxcnx 12995 Slot cslot 12997 Basecbs 12998 +gcplusg 13076 Scalarcsca 13079 ·𝑠 cvsca 13080 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-tp 3654 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-n0 9338 df-z 9415 df-uz 9691 df-fz 10173 df-struct 13000 df-ndx 13001 df-slot 13002 df-base 13004 df-plusg 13089 df-sca 13092 df-vsca 13093 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |