![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lmodvscad | GIF version |
Description: The scalar product operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 7-Feb-2023.) |
Ref | Expression |
---|---|
lvecfn.w | ⊢ 𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩}) |
lmodstr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
lmodstr.g | ⊢ (𝜑 → + ∈ 𝑋) |
lmodstr.s | ⊢ (𝜑 → 𝐹 ∈ 𝑌) |
lmodstr.m | ⊢ (𝜑 → · ∈ 𝑍) |
Ref | Expression |
---|---|
lmodvscad | ⊢ (𝜑 → · = ( ·𝑠 ‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vscaslid 12624 | . 2 ⊢ ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ) | |
2 | lvecfn.w | . . 3 ⊢ 𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩}) | |
3 | lmodstr.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
4 | lmodstr.g | . . 3 ⊢ (𝜑 → + ∈ 𝑋) | |
5 | lmodstr.s | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑌) | |
6 | lmodstr.m | . . 3 ⊢ (𝜑 → · ∈ 𝑍) | |
7 | 2, 3, 4, 5, 6 | lmodstrd 12625 | . 2 ⊢ (𝜑 → 𝑊 Struct ⟨1, 6⟩) |
8 | 1 | simpri 113 | . . . . 5 ⊢ ( ·𝑠 ‘ndx) ∈ ℕ |
9 | opexg 4230 | . . . . 5 ⊢ ((( ·𝑠 ‘ndx) ∈ ℕ ∧ · ∈ 𝑍) → ⟨( ·𝑠 ‘ndx), · ⟩ ∈ V) | |
10 | 8, 6, 9 | sylancr 414 | . . . 4 ⊢ (𝜑 → ⟨( ·𝑠 ‘ndx), · ⟩ ∈ V) |
11 | snidg 3623 | . . . 4 ⊢ (⟨( ·𝑠 ‘ndx), · ⟩ ∈ V → ⟨( ·𝑠 ‘ndx), · ⟩ ∈ {⟨( ·𝑠 ‘ndx), · ⟩}) | |
12 | elun2 3305 | . . . 4 ⊢ (⟨( ·𝑠 ‘ndx), · ⟩ ∈ {⟨( ·𝑠 ‘ndx), · ⟩} → ⟨( ·𝑠 ‘ndx), · ⟩ ∈ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})) | |
13 | 10, 11, 12 | 3syl 17 | . . 3 ⊢ (𝜑 → ⟨( ·𝑠 ‘ndx), · ⟩ ∈ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})) |
14 | 13, 2 | eleqtrrdi 2271 | . 2 ⊢ (𝜑 → ⟨( ·𝑠 ‘ndx), · ⟩ ∈ 𝑊) |
15 | 1, 7, 6, 14 | opelstrsl 12576 | 1 ⊢ (𝜑 → · = ( ·𝑠 ‘𝑊)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 Vcvv 2739 ∪ cun 3129 {csn 3594 {ctp 3596 ⟨cop 3597 ‘cfv 5218 1c1 7815 ℕcn 8922 6c6 8977 ndxcnx 12462 Slot cslot 12464 Basecbs 12465 +gcplusg 12539 Scalarcsca 12542 ·𝑠 cvsca 12543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-addcom 7914 ax-addass 7916 ax-distr 7918 ax-i2m1 7919 ax-0lt1 7920 ax-0id 7922 ax-rnegex 7923 ax-cnre 7925 ax-pre-ltirr 7926 ax-pre-ltwlin 7927 ax-pre-lttrn 7928 ax-pre-apti 7929 ax-pre-ltadd 7930 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-tp 3602 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-pnf 7997 df-mnf 7998 df-xr 7999 df-ltxr 8000 df-le 8001 df-sub 8133 df-neg 8134 df-inn 8923 df-2 8981 df-3 8982 df-4 8983 df-5 8984 df-6 8985 df-n0 9180 df-z 9257 df-uz 9532 df-fz 10012 df-struct 12467 df-ndx 12468 df-slot 12469 df-base 12471 df-plusg 12552 df-sca 12555 df-vsca 12556 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |