ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnd1id GIF version

Theorem mnd1id 13206
Description: The singleton element of a trivial monoid is its identity element. (Contributed by AV, 23-Jan-2020.)
Hypothesis
Ref Expression
mnd1.m 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
Assertion
Ref Expression
mnd1id (𝐼𝑉 → (0g𝑀) = 𝐼)

Proof of Theorem mnd1id
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 snexg 4227 . . . 4 (𝐼𝑉 → {𝐼} ∈ V)
2 opexg 4271 . . . . . . 7 ((𝐼𝑉𝐼𝑉) → ⟨𝐼, 𝐼⟩ ∈ V)
32anidms 397 . . . . . 6 (𝐼𝑉 → ⟨𝐼, 𝐼⟩ ∈ V)
4 opexg 4271 . . . . . 6 ((⟨𝐼, 𝐼⟩ ∈ V ∧ 𝐼𝑉) → ⟨⟨𝐼, 𝐼⟩, 𝐼⟩ ∈ V)
53, 4mpancom 422 . . . . 5 (𝐼𝑉 → ⟨⟨𝐼, 𝐼⟩, 𝐼⟩ ∈ V)
6 snexg 4227 . . . . 5 (⟨⟨𝐼, 𝐼⟩, 𝐼⟩ ∈ V → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V)
75, 6syl 14 . . . 4 (𝐼𝑉 → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V)
8 mnd1.m . . . . 5 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
98grpbaseg 12877 . . . 4 (({𝐼} ∈ V ∧ {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V) → {𝐼} = (Base‘𝑀))
101, 7, 9syl2anc 411 . . 3 (𝐼𝑉 → {𝐼} = (Base‘𝑀))
118grpplusgg 12878 . . . 4 (({𝐼} ∈ V ∧ {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V) → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀))
121, 7, 11syl2anc 411 . . 3 (𝐼𝑉 → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀))
13 snidg 3661 . . 3 (𝐼𝑉𝐼 ∈ {𝐼})
14 velsn 3649 . . . . 5 (𝑎 ∈ {𝐼} ↔ 𝑎 = 𝐼)
15 df-ov 5937 . . . . . . 7 (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩)
16 fvsng 5770 . . . . . . . 8 ((⟨𝐼, 𝐼⟩ ∈ V ∧ 𝐼𝑉) → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
173, 16mpancom 422 . . . . . . 7 (𝐼𝑉 → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
1815, 17eqtrid 2249 . . . . . 6 (𝐼𝑉 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼)
19 oveq2 5942 . . . . . . 7 (𝑎 = 𝐼 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑎) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
20 id 19 . . . . . . 7 (𝑎 = 𝐼𝑎 = 𝐼)
2119, 20eqeq12d 2219 . . . . . 6 (𝑎 = 𝐼 → ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑎) = 𝑎 ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼))
2218, 21syl5ibrcom 157 . . . . 5 (𝐼𝑉 → (𝑎 = 𝐼 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑎) = 𝑎))
2314, 22biimtrid 152 . . . 4 (𝐼𝑉 → (𝑎 ∈ {𝐼} → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑎) = 𝑎))
2423imp 124 . . 3 ((𝐼𝑉𝑎 ∈ {𝐼}) → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑎) = 𝑎)
25 oveq1 5941 . . . . . . 7 (𝑎 = 𝐼 → (𝑎{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
2625, 20eqeq12d 2219 . . . . . 6 (𝑎 = 𝐼 → ((𝑎{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑎 ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼))
2718, 26syl5ibrcom 157 . . . . 5 (𝐼𝑉 → (𝑎 = 𝐼 → (𝑎{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑎))
2814, 27biimtrid 152 . . . 4 (𝐼𝑉 → (𝑎 ∈ {𝐼} → (𝑎{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑎))
2928imp 124 . . 3 ((𝐼𝑉𝑎 ∈ {𝐼}) → (𝑎{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑎)
3010, 12, 13, 24, 29grpidd 13133 . 2 (𝐼𝑉𝐼 = (0g𝑀))
3130eqcomd 2210 1 (𝐼𝑉 → (0g𝑀) = 𝐼)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  wcel 2175  Vcvv 2771  {csn 3632  {cpr 3633  cop 3635  cfv 5268  (class class class)co 5934  ndxcnx 12748  Basecbs 12751  +gcplusg 12828  0gc0g 13006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-pre-ltirr 8019  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-iota 5229  df-fun 5270  df-fn 5271  df-fv 5276  df-riota 5889  df-ov 5937  df-pnf 8091  df-mnf 8092  df-ltxr 8094  df-inn 9019  df-2 9077  df-ndx 12754  df-slot 12755  df-base 12757  df-plusg 12841  df-0g 13008
This theorem is referenced by:  grp1  13356
  Copyright terms: Public domain W3C validator