ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnd1id GIF version

Theorem mnd1id 13028
Description: The singleton element of a trivial monoid is its identity element. (Contributed by AV, 23-Jan-2020.)
Hypothesis
Ref Expression
mnd1.m 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
Assertion
Ref Expression
mnd1id (𝐼𝑉 → (0g𝑀) = 𝐼)

Proof of Theorem mnd1id
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 snexg 4213 . . . 4 (𝐼𝑉 → {𝐼} ∈ V)
2 opexg 4257 . . . . . . 7 ((𝐼𝑉𝐼𝑉) → ⟨𝐼, 𝐼⟩ ∈ V)
32anidms 397 . . . . . 6 (𝐼𝑉 → ⟨𝐼, 𝐼⟩ ∈ V)
4 opexg 4257 . . . . . 6 ((⟨𝐼, 𝐼⟩ ∈ V ∧ 𝐼𝑉) → ⟨⟨𝐼, 𝐼⟩, 𝐼⟩ ∈ V)
53, 4mpancom 422 . . . . 5 (𝐼𝑉 → ⟨⟨𝐼, 𝐼⟩, 𝐼⟩ ∈ V)
6 snexg 4213 . . . . 5 (⟨⟨𝐼, 𝐼⟩, 𝐼⟩ ∈ V → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V)
75, 6syl 14 . . . 4 (𝐼𝑉 → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V)
8 mnd1.m . . . . 5 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
98grpbaseg 12744 . . . 4 (({𝐼} ∈ V ∧ {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V) → {𝐼} = (Base‘𝑀))
101, 7, 9syl2anc 411 . . 3 (𝐼𝑉 → {𝐼} = (Base‘𝑀))
118grpplusgg 12745 . . . 4 (({𝐼} ∈ V ∧ {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V) → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀))
121, 7, 11syl2anc 411 . . 3 (𝐼𝑉 → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀))
13 snidg 3647 . . 3 (𝐼𝑉𝐼 ∈ {𝐼})
14 velsn 3635 . . . . 5 (𝑎 ∈ {𝐼} ↔ 𝑎 = 𝐼)
15 df-ov 5921 . . . . . . 7 (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩)
16 fvsng 5754 . . . . . . . 8 ((⟨𝐼, 𝐼⟩ ∈ V ∧ 𝐼𝑉) → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
173, 16mpancom 422 . . . . . . 7 (𝐼𝑉 → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
1815, 17eqtrid 2238 . . . . . 6 (𝐼𝑉 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼)
19 oveq2 5926 . . . . . . 7 (𝑎 = 𝐼 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑎) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
20 id 19 . . . . . . 7 (𝑎 = 𝐼𝑎 = 𝐼)
2119, 20eqeq12d 2208 . . . . . 6 (𝑎 = 𝐼 → ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑎) = 𝑎 ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼))
2218, 21syl5ibrcom 157 . . . . 5 (𝐼𝑉 → (𝑎 = 𝐼 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑎) = 𝑎))
2314, 22biimtrid 152 . . . 4 (𝐼𝑉 → (𝑎 ∈ {𝐼} → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑎) = 𝑎))
2423imp 124 . . 3 ((𝐼𝑉𝑎 ∈ {𝐼}) → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑎) = 𝑎)
25 oveq1 5925 . . . . . . 7 (𝑎 = 𝐼 → (𝑎{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
2625, 20eqeq12d 2208 . . . . . 6 (𝑎 = 𝐼 → ((𝑎{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑎 ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼))
2718, 26syl5ibrcom 157 . . . . 5 (𝐼𝑉 → (𝑎 = 𝐼 → (𝑎{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑎))
2814, 27biimtrid 152 . . . 4 (𝐼𝑉 → (𝑎 ∈ {𝐼} → (𝑎{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑎))
2928imp 124 . . 3 ((𝐼𝑉𝑎 ∈ {𝐼}) → (𝑎{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑎)
3010, 12, 13, 24, 29grpidd 12966 . 2 (𝐼𝑉𝐼 = (0g𝑀))
3130eqcomd 2199 1 (𝐼𝑉 → (0g𝑀) = 𝐼)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  Vcvv 2760  {csn 3618  {cpr 3619  cop 3621  cfv 5254  (class class class)co 5918  ndxcnx 12615  Basecbs 12618  +gcplusg 12695  0gc0g 12867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-ov 5921  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869
This theorem is referenced by:  grp1  13178
  Copyright terms: Public domain W3C validator