![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mnd1id | GIF version |
Description: The singleton element of a trivial monoid is its identity element. (Contributed by AV, 23-Jan-2020.) |
Ref | Expression |
---|---|
mnd1.m | ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} |
Ref | Expression |
---|---|
mnd1id | ⊢ (𝐼 ∈ 𝑉 → (0g‘𝑀) = 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snexg 4213 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → {𝐼} ∈ V) | |
2 | opexg 4257 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐼 ∈ 𝑉) → 〈𝐼, 𝐼〉 ∈ V) | |
3 | 2 | anidms 397 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → 〈𝐼, 𝐼〉 ∈ V) |
4 | opexg 4257 | . . . . . 6 ⊢ ((〈𝐼, 𝐼〉 ∈ V ∧ 𝐼 ∈ 𝑉) → 〈〈𝐼, 𝐼〉, 𝐼〉 ∈ V) | |
5 | 3, 4 | mpancom 422 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → 〈〈𝐼, 𝐼〉, 𝐼〉 ∈ V) |
6 | snexg 4213 | . . . . 5 ⊢ (〈〈𝐼, 𝐼〉, 𝐼〉 ∈ V → {〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V) | |
7 | 5, 6 | syl 14 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → {〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V) |
8 | mnd1.m | . . . . 5 ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} | |
9 | 8 | grpbaseg 12744 | . . . 4 ⊢ (({𝐼} ∈ V ∧ {〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V) → {𝐼} = (Base‘𝑀)) |
10 | 1, 7, 9 | syl2anc 411 | . . 3 ⊢ (𝐼 ∈ 𝑉 → {𝐼} = (Base‘𝑀)) |
11 | 8 | grpplusgg 12745 | . . . 4 ⊢ (({𝐼} ∈ V ∧ {〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V) → {〈〈𝐼, 𝐼〉, 𝐼〉} = (+g‘𝑀)) |
12 | 1, 7, 11 | syl2anc 411 | . . 3 ⊢ (𝐼 ∈ 𝑉 → {〈〈𝐼, 𝐼〉, 𝐼〉} = (+g‘𝑀)) |
13 | snidg 3647 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ {𝐼}) | |
14 | velsn 3635 | . . . . 5 ⊢ (𝑎 ∈ {𝐼} ↔ 𝑎 = 𝐼) | |
15 | df-ov 5921 | . . . . . . 7 ⊢ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = ({〈〈𝐼, 𝐼〉, 𝐼〉}‘〈𝐼, 𝐼〉) | |
16 | fvsng 5754 | . . . . . . . 8 ⊢ ((〈𝐼, 𝐼〉 ∈ V ∧ 𝐼 ∈ 𝑉) → ({〈〈𝐼, 𝐼〉, 𝐼〉}‘〈𝐼, 𝐼〉) = 𝐼) | |
17 | 3, 16 | mpancom 422 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → ({〈〈𝐼, 𝐼〉, 𝐼〉}‘〈𝐼, 𝐼〉) = 𝐼) |
18 | 15, 17 | eqtrid 2238 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝐼) |
19 | oveq2 5926 | . . . . . . 7 ⊢ (𝑎 = 𝐼 → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼)) | |
20 | id 19 | . . . . . . 7 ⊢ (𝑎 = 𝐼 → 𝑎 = 𝐼) | |
21 | 19, 20 | eqeq12d 2208 | . . . . . 6 ⊢ (𝑎 = 𝐼 → ((𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) = 𝑎 ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝐼)) |
22 | 18, 21 | syl5ibrcom 157 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → (𝑎 = 𝐼 → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) = 𝑎)) |
23 | 14, 22 | biimtrid 152 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (𝑎 ∈ {𝐼} → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) = 𝑎)) |
24 | 23 | imp 124 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑎 ∈ {𝐼}) → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) = 𝑎) |
25 | oveq1 5925 | . . . . . . 7 ⊢ (𝑎 = 𝐼 → (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼)) | |
26 | 25, 20 | eqeq12d 2208 | . . . . . 6 ⊢ (𝑎 = 𝐼 → ((𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝑎 ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝐼)) |
27 | 18, 26 | syl5ibrcom 157 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → (𝑎 = 𝐼 → (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝑎)) |
28 | 14, 27 | biimtrid 152 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (𝑎 ∈ {𝐼} → (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝑎)) |
29 | 28 | imp 124 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑎 ∈ {𝐼}) → (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝑎) |
30 | 10, 12, 13, 24, 29 | grpidd 12966 | . 2 ⊢ (𝐼 ∈ 𝑉 → 𝐼 = (0g‘𝑀)) |
31 | 30 | eqcomd 2199 | 1 ⊢ (𝐼 ∈ 𝑉 → (0g‘𝑀) = 𝐼) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 {csn 3618 {cpr 3619 〈cop 3621 ‘cfv 5254 (class class class)co 5918 ndxcnx 12615 Basecbs 12618 +gcplusg 12695 0gc0g 12867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-riota 5873 df-ov 5921 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-inn 8983 df-2 9041 df-ndx 12621 df-slot 12622 df-base 12624 df-plusg 12708 df-0g 12869 |
This theorem is referenced by: grp1 13178 |
Copyright terms: Public domain | W3C validator |