Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mnd1id | GIF version |
Description: The singleton element of a trivial monoid is its identity element. (Contributed by AV, 23-Jan-2020.) |
Ref | Expression |
---|---|
mnd1.m | ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} |
Ref | Expression |
---|---|
mnd1id | ⊢ (𝐼 ∈ 𝑉 → (0g‘𝑀) = 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snexg 4170 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → {𝐼} ∈ V) | |
2 | opexg 4213 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐼 ∈ 𝑉) → 〈𝐼, 𝐼〉 ∈ V) | |
3 | 2 | anidms 395 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → 〈𝐼, 𝐼〉 ∈ V) |
4 | opexg 4213 | . . . . . 6 ⊢ ((〈𝐼, 𝐼〉 ∈ V ∧ 𝐼 ∈ 𝑉) → 〈〈𝐼, 𝐼〉, 𝐼〉 ∈ V) | |
5 | 3, 4 | mpancom 420 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → 〈〈𝐼, 𝐼〉, 𝐼〉 ∈ V) |
6 | snexg 4170 | . . . . 5 ⊢ (〈〈𝐼, 𝐼〉, 𝐼〉 ∈ V → {〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V) | |
7 | 5, 6 | syl 14 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → {〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V) |
8 | mnd1.m | . . . . 5 ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} | |
9 | 8 | grpbaseg 12526 | . . . 4 ⊢ (({𝐼} ∈ V ∧ {〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V) → {𝐼} = (Base‘𝑀)) |
10 | 1, 7, 9 | syl2anc 409 | . . 3 ⊢ (𝐼 ∈ 𝑉 → {𝐼} = (Base‘𝑀)) |
11 | 8 | grpplusgg 12527 | . . . 4 ⊢ (({𝐼} ∈ V ∧ {〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V) → {〈〈𝐼, 𝐼〉, 𝐼〉} = (+g‘𝑀)) |
12 | 1, 7, 11 | syl2anc 409 | . . 3 ⊢ (𝐼 ∈ 𝑉 → {〈〈𝐼, 𝐼〉, 𝐼〉} = (+g‘𝑀)) |
13 | snidg 3612 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ {𝐼}) | |
14 | velsn 3600 | . . . . 5 ⊢ (𝑎 ∈ {𝐼} ↔ 𝑎 = 𝐼) | |
15 | df-ov 5856 | . . . . . . 7 ⊢ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = ({〈〈𝐼, 𝐼〉, 𝐼〉}‘〈𝐼, 𝐼〉) | |
16 | fvsng 5692 | . . . . . . . 8 ⊢ ((〈𝐼, 𝐼〉 ∈ V ∧ 𝐼 ∈ 𝑉) → ({〈〈𝐼, 𝐼〉, 𝐼〉}‘〈𝐼, 𝐼〉) = 𝐼) | |
17 | 3, 16 | mpancom 420 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → ({〈〈𝐼, 𝐼〉, 𝐼〉}‘〈𝐼, 𝐼〉) = 𝐼) |
18 | 15, 17 | eqtrid 2215 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝐼) |
19 | oveq2 5861 | . . . . . . 7 ⊢ (𝑎 = 𝐼 → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼)) | |
20 | id 19 | . . . . . . 7 ⊢ (𝑎 = 𝐼 → 𝑎 = 𝐼) | |
21 | 19, 20 | eqeq12d 2185 | . . . . . 6 ⊢ (𝑎 = 𝐼 → ((𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) = 𝑎 ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝐼)) |
22 | 18, 21 | syl5ibrcom 156 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → (𝑎 = 𝐼 → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) = 𝑎)) |
23 | 14, 22 | syl5bi 151 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (𝑎 ∈ {𝐼} → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) = 𝑎)) |
24 | 23 | imp 123 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑎 ∈ {𝐼}) → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) = 𝑎) |
25 | oveq1 5860 | . . . . . . 7 ⊢ (𝑎 = 𝐼 → (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼)) | |
26 | 25, 20 | eqeq12d 2185 | . . . . . 6 ⊢ (𝑎 = 𝐼 → ((𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝑎 ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝐼)) |
27 | 18, 26 | syl5ibrcom 156 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → (𝑎 = 𝐼 → (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝑎)) |
28 | 14, 27 | syl5bi 151 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (𝑎 ∈ {𝐼} → (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝑎)) |
29 | 28 | imp 123 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑎 ∈ {𝐼}) → (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝑎) |
30 | 10, 12, 13, 24, 29 | grpidd 12637 | . 2 ⊢ (𝐼 ∈ 𝑉 → 𝐼 = (0g‘𝑀)) |
31 | 30 | eqcomd 2176 | 1 ⊢ (𝐼 ∈ 𝑉 → (0g‘𝑀) = 𝐼) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 Vcvv 2730 {csn 3583 {cpr 3584 〈cop 3586 ‘cfv 5198 (class class class)co 5853 ndxcnx 12413 Basecbs 12416 +gcplusg 12480 0gc0g 12596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-pre-ltirr 7886 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 df-riota 5809 df-ov 5856 df-pnf 7956 df-mnf 7957 df-ltxr 7959 df-inn 8879 df-2 8937 df-ndx 12419 df-slot 12420 df-base 12422 df-plusg 12493 df-0g 12598 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |