Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > srnginvld | GIF version |
Description: The involution function of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) |
Ref | Expression |
---|---|
srngstr.r | ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) |
srngstrd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
srngstrd.p | ⊢ (𝜑 → + ∈ 𝑊) |
srngstrd.m | ⊢ (𝜑 → · ∈ 𝑋) |
srngstrd.s | ⊢ (𝜑 → ∗ ∈ 𝑌) |
Ref | Expression |
---|---|
srnginvld | ⊢ (𝜑 → ∗ = (*𝑟‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | starvslid 12509 | . 2 ⊢ (*𝑟 = Slot (*𝑟‘ndx) ∧ (*𝑟‘ndx) ∈ ℕ) | |
2 | srngstr.r | . . 3 ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) | |
3 | srngstrd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
4 | srngstrd.p | . . 3 ⊢ (𝜑 → + ∈ 𝑊) | |
5 | srngstrd.m | . . 3 ⊢ (𝜑 → · ∈ 𝑋) | |
6 | srngstrd.s | . . 3 ⊢ (𝜑 → ∗ ∈ 𝑌) | |
7 | 2, 3, 4, 5, 6 | srngstrd 12510 | . 2 ⊢ (𝜑 → 𝑅 Struct 〈1, 4〉) |
8 | 1 | simpri 112 | . . . . 5 ⊢ (*𝑟‘ndx) ∈ ℕ |
9 | opexg 4203 | . . . . 5 ⊢ (((*𝑟‘ndx) ∈ ℕ ∧ ∗ ∈ 𝑌) → 〈(*𝑟‘ndx), ∗ 〉 ∈ V) | |
10 | 8, 6, 9 | sylancr 411 | . . . 4 ⊢ (𝜑 → 〈(*𝑟‘ndx), ∗ 〉 ∈ V) |
11 | snidg 3602 | . . . 4 ⊢ (〈(*𝑟‘ndx), ∗ 〉 ∈ V → 〈(*𝑟‘ndx), ∗ 〉 ∈ {〈(*𝑟‘ndx), ∗ 〉}) | |
12 | elun2 3288 | . . . 4 ⊢ (〈(*𝑟‘ndx), ∗ 〉 ∈ {〈(*𝑟‘ndx), ∗ 〉} → 〈(*𝑟‘ndx), ∗ 〉 ∈ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉})) | |
13 | 10, 11, 12 | 3syl 17 | . . 3 ⊢ (𝜑 → 〈(*𝑟‘ndx), ∗ 〉 ∈ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉})) |
14 | 13, 2 | eleqtrrdi 2258 | . 2 ⊢ (𝜑 → 〈(*𝑟‘ndx), ∗ 〉 ∈ 𝑅) |
15 | 1, 7, 6, 14 | opelstrsl 12484 | 1 ⊢ (𝜑 → ∗ = (*𝑟‘𝑅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1342 ∈ wcel 2135 Vcvv 2724 ∪ cun 3112 {csn 3573 {ctp 3575 〈cop 3576 ‘cfv 5185 1c1 7748 ℕcn 8851 4c4 8904 ndxcnx 12385 Slot cslot 12387 Basecbs 12388 +gcplusg 12450 .rcmulr 12451 *𝑟cstv 12452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-sep 4097 ax-pow 4150 ax-pr 4184 ax-un 4408 ax-setind 4511 ax-cnex 7838 ax-resscn 7839 ax-1cn 7840 ax-1re 7841 ax-icn 7842 ax-addcl 7843 ax-addrcl 7844 ax-mulcl 7845 ax-addcom 7847 ax-addass 7849 ax-distr 7851 ax-i2m1 7852 ax-0lt1 7853 ax-0id 7855 ax-rnegex 7856 ax-cnre 7858 ax-pre-ltirr 7859 ax-pre-ltwlin 7860 ax-pre-lttrn 7861 ax-pre-apti 7862 ax-pre-ltadd 7863 |
This theorem depends on definitions: df-bi 116 df-3or 968 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-nel 2430 df-ral 2447 df-rex 2448 df-reu 2449 df-rab 2451 df-v 2726 df-sbc 2950 df-dif 3116 df-un 3118 df-in 3120 df-ss 3127 df-nul 3408 df-pw 3558 df-sn 3579 df-pr 3580 df-tp 3581 df-op 3582 df-uni 3787 df-int 3822 df-br 3980 df-opab 4041 df-mpt 4042 df-id 4268 df-xp 4607 df-rel 4608 df-cnv 4609 df-co 4610 df-dm 4611 df-rn 4612 df-res 4613 df-ima 4614 df-iota 5150 df-fun 5187 df-fn 5188 df-f 5189 df-fv 5193 df-riota 5795 df-ov 5842 df-oprab 5843 df-mpo 5844 df-pnf 7929 df-mnf 7930 df-xr 7931 df-ltxr 7932 df-le 7933 df-sub 8065 df-neg 8066 df-inn 8852 df-2 8910 df-3 8911 df-4 8912 df-n0 9109 df-z 9186 df-uz 9461 df-fz 9939 df-struct 12390 df-ndx 12391 df-slot 12392 df-base 12394 df-plusg 12463 df-mulr 12464 df-starv 12465 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |