ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumsplitsnun GIF version

Theorem fsumsplitsnun 11316
Description: Separate out a term in a finite sum by splitting the sum into two parts. (Contributed by Alexander van der Vekens, 1-Sep-2018.) (Revised by AV, 17-Dec-2021.)
Assertion
Ref Expression
fsumsplitsnun ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 = (Σ𝑘𝐴 𝐵 + 𝑍 / 𝑘𝐵))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑍
Allowed substitution hints:   𝐵(𝑘)   𝑉(𝑘)

Proof of Theorem fsumsplitsnun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-nel 2423 . . . . . . 7 (𝑍𝐴 ↔ ¬ 𝑍𝐴)
2 disjsn 3621 . . . . . . 7 ((𝐴 ∩ {𝑍}) = ∅ ↔ ¬ 𝑍𝐴)
31, 2sylbb2 137 . . . . . 6 (𝑍𝐴 → (𝐴 ∩ {𝑍}) = ∅)
43adantl 275 . . . . 5 ((𝑍𝑉𝑍𝐴) → (𝐴 ∩ {𝑍}) = ∅)
543ad2ant2 1004 . . . 4 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → (𝐴 ∩ {𝑍}) = ∅)
6 eqidd 2158 . . . 4 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → (𝐴 ∪ {𝑍}) = (𝐴 ∪ {𝑍}))
7 simp1 982 . . . . 5 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → 𝐴 ∈ Fin)
8 simp2l 1008 . . . . . 6 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → 𝑍𝑉)
9 snfig 6759 . . . . . 6 (𝑍𝑉 → {𝑍} ∈ Fin)
108, 9syl 14 . . . . 5 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → {𝑍} ∈ Fin)
11 unfidisj 6866 . . . . 5 ((𝐴 ∈ Fin ∧ {𝑍} ∈ Fin ∧ (𝐴 ∩ {𝑍}) = ∅) → (𝐴 ∪ {𝑍}) ∈ Fin)
127, 10, 5, 11syl3anc 1220 . . . 4 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → (𝐴 ∪ {𝑍}) ∈ Fin)
13 rspcsbela 3090 . . . . . . . 8 ((𝑥 ∈ (𝐴 ∪ {𝑍}) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → 𝑥 / 𝑘𝐵 ∈ ℤ)
1413expcom 115 . . . . . . 7 (∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ → (𝑥 ∈ (𝐴 ∪ {𝑍}) → 𝑥 / 𝑘𝐵 ∈ ℤ))
15143ad2ant3 1005 . . . . . 6 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → (𝑥 ∈ (𝐴 ∪ {𝑍}) → 𝑥 / 𝑘𝐵 ∈ ℤ))
1615imp 123 . . . . 5 (((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) ∧ 𝑥 ∈ (𝐴 ∪ {𝑍})) → 𝑥 / 𝑘𝐵 ∈ ℤ)
1716zcnd 9287 . . . 4 (((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) ∧ 𝑥 ∈ (𝐴 ∪ {𝑍})) → 𝑥 / 𝑘𝐵 ∈ ℂ)
185, 6, 12, 17fsumsplit 11304 . . 3 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → Σ𝑥 ∈ (𝐴 ∪ {𝑍})𝑥 / 𝑘𝐵 = (Σ𝑥𝐴 𝑥 / 𝑘𝐵 + Σ𝑥 ∈ {𝑍}𝑥 / 𝑘𝐵))
19 nfcv 2299 . . . 4 𝑥𝐵
20 nfcsb1v 3064 . . . 4 𝑘𝑥 / 𝑘𝐵
21 csbeq1a 3040 . . . 4 (𝑘 = 𝑥𝐵 = 𝑥 / 𝑘𝐵)
2219, 20, 21cbvsumi 11259 . . 3 Σ𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 = Σ𝑥 ∈ (𝐴 ∪ {𝑍})𝑥 / 𝑘𝐵
2319, 20, 21cbvsumi 11259 . . . 4 Σ𝑘𝐴 𝐵 = Σ𝑥𝐴 𝑥 / 𝑘𝐵
2419, 20, 21cbvsumi 11259 . . . 4 Σ𝑘 ∈ {𝑍}𝐵 = Σ𝑥 ∈ {𝑍}𝑥 / 𝑘𝐵
2523, 24oveq12i 5836 . . 3 𝑘𝐴 𝐵 + Σ𝑘 ∈ {𝑍}𝐵) = (Σ𝑥𝐴 𝑥 / 𝑘𝐵 + Σ𝑥 ∈ {𝑍}𝑥 / 𝑘𝐵)
2618, 22, 253eqtr4g 2215 . 2 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 = (Σ𝑘𝐴 𝐵 + Σ𝑘 ∈ {𝑍}𝐵))
27 snidg 3589 . . . . . . . . 9 (𝑍𝑉𝑍 ∈ {𝑍})
2827adantr 274 . . . . . . . 8 ((𝑍𝑉𝑍𝐴) → 𝑍 ∈ {𝑍})
29283ad2ant2 1004 . . . . . . 7 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → 𝑍 ∈ {𝑍})
30 elun2 3275 . . . . . . 7 (𝑍 ∈ {𝑍} → 𝑍 ∈ (𝐴 ∪ {𝑍}))
3129, 30syl 14 . . . . . 6 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → 𝑍 ∈ (𝐴 ∪ {𝑍}))
32 simp3 984 . . . . . 6 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ)
33 rspcsbela 3090 . . . . . 6 ((𝑍 ∈ (𝐴 ∪ {𝑍}) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → 𝑍 / 𝑘𝐵 ∈ ℤ)
3431, 32, 33syl2anc 409 . . . . 5 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → 𝑍 / 𝑘𝐵 ∈ ℤ)
3534zcnd 9287 . . . 4 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → 𝑍 / 𝑘𝐵 ∈ ℂ)
36 sumsns 11312 . . . 4 ((𝑍𝑉𝑍 / 𝑘𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑍}𝐵 = 𝑍 / 𝑘𝐵)
378, 35, 36syl2anc 409 . . 3 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → Σ𝑘 ∈ {𝑍}𝐵 = 𝑍 / 𝑘𝐵)
3837oveq2d 5840 . 2 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → (Σ𝑘𝐴 𝐵 + Σ𝑘 ∈ {𝑍}𝐵) = (Σ𝑘𝐴 𝐵 + 𝑍 / 𝑘𝐵))
3926, 38eqtrd 2190 1 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 = (Σ𝑘𝐴 𝐵 + 𝑍 / 𝑘𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  w3a 963   = wceq 1335  wcel 2128  wnel 2422  wral 2435  csb 3031  cun 3100  cin 3101  c0 3394  {csn 3560  (class class class)co 5824  Fincfn 6685  cc 7730   + caddc 7735  cz 9167  Σcsu 11250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-iinf 4547  ax-cnex 7823  ax-resscn 7824  ax-1cn 7825  ax-1re 7826  ax-icn 7827  ax-addcl 7828  ax-addrcl 7829  ax-mulcl 7830  ax-mulrcl 7831  ax-addcom 7832  ax-mulcom 7833  ax-addass 7834  ax-mulass 7835  ax-distr 7836  ax-i2m1 7837  ax-0lt1 7838  ax-1rid 7839  ax-0id 7840  ax-rnegex 7841  ax-precex 7842  ax-cnre 7843  ax-pre-ltirr 7844  ax-pre-ltwlin 7845  ax-pre-lttrn 7846  ax-pre-apti 7847  ax-pre-ltadd 7848  ax-pre-mulgt0 7849  ax-pre-mulext 7850  ax-arch 7851  ax-caucvg 7852
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4550  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-f1 5175  df-fo 5176  df-f1o 5177  df-fv 5178  df-isom 5179  df-riota 5780  df-ov 5827  df-oprab 5828  df-mpo 5829  df-1st 6088  df-2nd 6089  df-recs 6252  df-irdg 6317  df-frec 6338  df-1o 6363  df-oadd 6367  df-er 6480  df-en 6686  df-dom 6687  df-fin 6688  df-pnf 7914  df-mnf 7915  df-xr 7916  df-ltxr 7917  df-le 7918  df-sub 8048  df-neg 8049  df-reap 8450  df-ap 8457  df-div 8546  df-inn 8834  df-2 8892  df-3 8893  df-4 8894  df-n0 9091  df-z 9168  df-uz 9440  df-q 9529  df-rp 9561  df-fz 9913  df-fzo 10042  df-seqfrec 10345  df-exp 10419  df-ihash 10650  df-cj 10742  df-re 10743  df-im 10744  df-rsqrt 10898  df-abs 10899  df-clim 11176  df-sumdc 11251
This theorem is referenced by:  modfsummodlemstep  11354
  Copyright terms: Public domain W3C validator