ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumsplitsnun GIF version

Theorem fsumsplitsnun 11440
Description: Separate out a term in a finite sum by splitting the sum into two parts. (Contributed by Alexander van der Vekens, 1-Sep-2018.) (Revised by AV, 17-Dec-2021.)
Assertion
Ref Expression
fsumsplitsnun ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 = (Σ𝑘𝐴 𝐵 + 𝑍 / 𝑘𝐵))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑍
Allowed substitution hints:   𝐵(𝑘)   𝑉(𝑘)

Proof of Theorem fsumsplitsnun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-nel 2453 . . . . . . 7 (𝑍𝐴 ↔ ¬ 𝑍𝐴)
2 disjsn 3666 . . . . . . 7 ((𝐴 ∩ {𝑍}) = ∅ ↔ ¬ 𝑍𝐴)
31, 2sylbb2 138 . . . . . 6 (𝑍𝐴 → (𝐴 ∩ {𝑍}) = ∅)
43adantl 277 . . . . 5 ((𝑍𝑉𝑍𝐴) → (𝐴 ∩ {𝑍}) = ∅)
543ad2ant2 1020 . . . 4 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → (𝐴 ∩ {𝑍}) = ∅)
6 eqidd 2188 . . . 4 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → (𝐴 ∪ {𝑍}) = (𝐴 ∪ {𝑍}))
7 simp1 998 . . . . 5 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → 𝐴 ∈ Fin)
8 simp2l 1024 . . . . . 6 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → 𝑍𝑉)
9 snfig 6827 . . . . . 6 (𝑍𝑉 → {𝑍} ∈ Fin)
108, 9syl 14 . . . . 5 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → {𝑍} ∈ Fin)
11 unfidisj 6934 . . . . 5 ((𝐴 ∈ Fin ∧ {𝑍} ∈ Fin ∧ (𝐴 ∩ {𝑍}) = ∅) → (𝐴 ∪ {𝑍}) ∈ Fin)
127, 10, 5, 11syl3anc 1248 . . . 4 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → (𝐴 ∪ {𝑍}) ∈ Fin)
13 rspcsbela 3128 . . . . . . . 8 ((𝑥 ∈ (𝐴 ∪ {𝑍}) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → 𝑥 / 𝑘𝐵 ∈ ℤ)
1413expcom 116 . . . . . . 7 (∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ → (𝑥 ∈ (𝐴 ∪ {𝑍}) → 𝑥 / 𝑘𝐵 ∈ ℤ))
15143ad2ant3 1021 . . . . . 6 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → (𝑥 ∈ (𝐴 ∪ {𝑍}) → 𝑥 / 𝑘𝐵 ∈ ℤ))
1615imp 124 . . . . 5 (((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) ∧ 𝑥 ∈ (𝐴 ∪ {𝑍})) → 𝑥 / 𝑘𝐵 ∈ ℤ)
1716zcnd 9389 . . . 4 (((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) ∧ 𝑥 ∈ (𝐴 ∪ {𝑍})) → 𝑥 / 𝑘𝐵 ∈ ℂ)
185, 6, 12, 17fsumsplit 11428 . . 3 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → Σ𝑥 ∈ (𝐴 ∪ {𝑍})𝑥 / 𝑘𝐵 = (Σ𝑥𝐴 𝑥 / 𝑘𝐵 + Σ𝑥 ∈ {𝑍}𝑥 / 𝑘𝐵))
19 nfcv 2329 . . . 4 𝑥𝐵
20 nfcsb1v 3102 . . . 4 𝑘𝑥 / 𝑘𝐵
21 csbeq1a 3078 . . . 4 (𝑘 = 𝑥𝐵 = 𝑥 / 𝑘𝐵)
2219, 20, 21cbvsumi 11383 . . 3 Σ𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 = Σ𝑥 ∈ (𝐴 ∪ {𝑍})𝑥 / 𝑘𝐵
2319, 20, 21cbvsumi 11383 . . . 4 Σ𝑘𝐴 𝐵 = Σ𝑥𝐴 𝑥 / 𝑘𝐵
2419, 20, 21cbvsumi 11383 . . . 4 Σ𝑘 ∈ {𝑍}𝐵 = Σ𝑥 ∈ {𝑍}𝑥 / 𝑘𝐵
2523, 24oveq12i 5900 . . 3 𝑘𝐴 𝐵 + Σ𝑘 ∈ {𝑍}𝐵) = (Σ𝑥𝐴 𝑥 / 𝑘𝐵 + Σ𝑥 ∈ {𝑍}𝑥 / 𝑘𝐵)
2618, 22, 253eqtr4g 2245 . 2 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 = (Σ𝑘𝐴 𝐵 + Σ𝑘 ∈ {𝑍}𝐵))
27 snidg 3633 . . . . . . . . 9 (𝑍𝑉𝑍 ∈ {𝑍})
2827adantr 276 . . . . . . . 8 ((𝑍𝑉𝑍𝐴) → 𝑍 ∈ {𝑍})
29283ad2ant2 1020 . . . . . . 7 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → 𝑍 ∈ {𝑍})
30 elun2 3315 . . . . . . 7 (𝑍 ∈ {𝑍} → 𝑍 ∈ (𝐴 ∪ {𝑍}))
3129, 30syl 14 . . . . . 6 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → 𝑍 ∈ (𝐴 ∪ {𝑍}))
32 simp3 1000 . . . . . 6 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ)
33 rspcsbela 3128 . . . . . 6 ((𝑍 ∈ (𝐴 ∪ {𝑍}) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → 𝑍 / 𝑘𝐵 ∈ ℤ)
3431, 32, 33syl2anc 411 . . . . 5 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → 𝑍 / 𝑘𝐵 ∈ ℤ)
3534zcnd 9389 . . . 4 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → 𝑍 / 𝑘𝐵 ∈ ℂ)
36 sumsns 11436 . . . 4 ((𝑍𝑉𝑍 / 𝑘𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑍}𝐵 = 𝑍 / 𝑘𝐵)
378, 35, 36syl2anc 411 . . 3 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → Σ𝑘 ∈ {𝑍}𝐵 = 𝑍 / 𝑘𝐵)
3837oveq2d 5904 . 2 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → (Σ𝑘𝐴 𝐵 + Σ𝑘 ∈ {𝑍}𝐵) = (Σ𝑘𝐴 𝐵 + 𝑍 / 𝑘𝐵))
3926, 38eqtrd 2220 1 ((𝐴 ∈ Fin ∧ (𝑍𝑉𝑍𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑍})𝐵 = (Σ𝑘𝐴 𝐵 + 𝑍 / 𝑘𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  w3a 979   = wceq 1363  wcel 2158  wnel 2452  wral 2465  csb 3069  cun 3139  cin 3140  c0 3434  {csn 3604  (class class class)co 5888  Fincfn 6753  cc 7822   + caddc 7827  cz 9266  Σcsu 11374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942  ax-arch 7943  ax-caucvg 7944
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-isom 5237  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-irdg 6384  df-frec 6405  df-1o 6430  df-oadd 6434  df-er 6548  df-en 6754  df-dom 6755  df-fin 6756  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643  df-inn 8933  df-2 8991  df-3 8992  df-4 8993  df-n0 9190  df-z 9267  df-uz 9542  df-q 9633  df-rp 9667  df-fz 10022  df-fzo 10156  df-seqfrec 10459  df-exp 10533  df-ihash 10769  df-cj 10864  df-re 10865  df-im 10866  df-rsqrt 11020  df-abs 11021  df-clim 11300  df-sumdc 11375
This theorem is referenced by:  modfsummodlemstep  11478
  Copyright terms: Public domain W3C validator