Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl5bir | GIF version |
Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl5bir.1 | ⊢ (𝜓 ↔ 𝜑) |
syl5bir.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
Ref | Expression |
---|---|
syl5bir | ⊢ (𝜒 → (𝜑 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5bir.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
2 | 1 | biimpri 132 | . 2 ⊢ (𝜑 → 𝜓) |
3 | syl5bir.2 | . 2 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
4 | 2, 3 | syl5 32 | 1 ⊢ (𝜒 → (𝜑 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3imtr3g 203 19.37-1 1662 mo3h 2067 necon1bidc 2388 necon4aidc 2404 r19.30dc 2613 ceqex 2853 ssdisj 3465 ralidm 3509 exmid1dc 4179 rexxfrd 4441 sucprcreg 4526 imain 5270 f0rn0 5382 funopfv 5526 mpteqb 5576 funfvima 5716 fliftfun 5764 iinerm 6573 eroveu 6592 th3qlem1 6603 updjudhf 7044 elni2 7255 genpdisj 7464 lttri3 7978 nn0ltexp2 10623 zfz1iso 10754 cau3lem 11056 maxleast 11155 rexanre 11162 climcau 11288 summodc 11324 mertenslem2 11477 prodmodclem2 11518 prodmodc 11519 fprodseq 11524 divgcdcoprmex 12034 prmind2 12052 pcqmul 12235 pcxcl 12243 pcadd 12271 mul4sq 12324 opnneiid 12804 txuni2 12896 txbas 12898 txbasval 12907 txlm 12919 blin2 13072 tgqioo 13187 2sqlem5 13595 bj-charfunr 13692 |
Copyright terms: Public domain | W3C validator |