![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5bir | GIF version |
Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl5bir.1 | ⊢ (𝜓 ↔ 𝜑) |
syl5bir.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
Ref | Expression |
---|---|
syl5bir | ⊢ (𝜒 → (𝜑 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5bir.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
2 | 1 | biimpri 132 | . 2 ⊢ (𝜑 → 𝜓) |
3 | syl5bir.2 | . 2 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
4 | 2, 3 | syl5 32 | 1 ⊢ (𝜒 → (𝜑 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3imtr3g 203 19.37-1 1633 mo3h 2026 necon1bidc 2332 necon4aidc 2348 ceqex 2780 ssdisj 3383 ralidm 3427 exmid1dc 4081 rexxfrd 4342 sucprcreg 4422 imain 5161 f0rn0 5273 funopfv 5413 mpteqb 5463 funfvima 5601 fliftfun 5649 iinerm 6453 eroveu 6472 th3qlem1 6483 updjudhf 6914 elni2 7064 genpdisj 7273 lttri3 7761 zfz1iso 10471 cau3lem 10772 maxleast 10871 rexanre 10878 climcau 11002 summodc 11038 mertenslem2 11191 divgcdcoprmex 11623 prmind2 11641 opnneiid 12170 txuni2 12261 txbas 12263 txbasval 12272 txlm 12284 blin2 12415 tgqioo 12527 |
Copyright terms: Public domain | W3C validator |