Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl5bir | GIF version |
Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl5bir.1 | ⊢ (𝜓 ↔ 𝜑) |
syl5bir.2 | ⊢ (𝜒 → (𝜓 → 𝜃)) |
Ref | Expression |
---|---|
syl5bir | ⊢ (𝜒 → (𝜑 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5bir.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
2 | 1 | biimpri 132 | . 2 ⊢ (𝜑 → 𝜓) |
3 | syl5bir.2 | . 2 ⊢ (𝜒 → (𝜓 → 𝜃)) | |
4 | 2, 3 | syl5 32 | 1 ⊢ (𝜒 → (𝜑 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3imtr3g 203 19.37-1 1667 mo3h 2072 necon1bidc 2392 necon4aidc 2408 r19.30dc 2617 ceqex 2857 ssdisj 3471 ralidm 3515 exmid1dc 4186 rexxfrd 4448 sucprcreg 4533 imain 5280 f0rn0 5392 funopfv 5536 mpteqb 5586 funfvima 5727 fliftfun 5775 iinerm 6585 eroveu 6604 th3qlem1 6615 updjudhf 7056 elni2 7276 genpdisj 7485 lttri3 7999 nn0ltexp2 10644 zfz1iso 10776 cau3lem 11078 maxleast 11177 rexanre 11184 climcau 11310 summodc 11346 mertenslem2 11499 prodmodclem2 11540 prodmodc 11541 fprodseq 11546 divgcdcoprmex 12056 prmind2 12074 pcqmul 12257 pcxcl 12265 pcadd 12293 mul4sq 12346 opnneiid 12958 txuni2 13050 txbas 13052 txbasval 13061 txlm 13073 blin2 13226 tgqioo 13341 2sqlem5 13749 bj-charfunr 13845 |
Copyright terms: Public domain | W3C validator |