Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2sqlem5 | GIF version |
Description: Lemma for 2sq . If a number that is a sum of two squares is divisible by a prime that is a sum of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.) |
Ref | Expression |
---|---|
2sq.1 | ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) |
2sqlem5.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
2sqlem5.2 | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
2sqlem5.3 | ⊢ (𝜑 → (𝑁 · 𝑃) ∈ 𝑆) |
2sqlem5.4 | ⊢ (𝜑 → 𝑃 ∈ 𝑆) |
Ref | Expression |
---|---|
2sqlem5 | ⊢ (𝜑 → 𝑁 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sqlem5.4 | . . 3 ⊢ (𝜑 → 𝑃 ∈ 𝑆) | |
2 | 2sq.1 | . . . 4 ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) | |
3 | 2 | 2sqlem2 13551 | . . 3 ⊢ (𝑃 ∈ 𝑆 ↔ ∃𝑝 ∈ ℤ ∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2))) |
4 | 1, 3 | sylib 121 | . 2 ⊢ (𝜑 → ∃𝑝 ∈ ℤ ∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2))) |
5 | 2sqlem5.3 | . . 3 ⊢ (𝜑 → (𝑁 · 𝑃) ∈ 𝑆) | |
6 | 2 | 2sqlem2 13551 | . . 3 ⊢ ((𝑁 · 𝑃) ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) |
7 | 5, 6 | sylib 121 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) |
8 | reeanv 2634 | . . 3 ⊢ (∃𝑝 ∈ ℤ ∃𝑥 ∈ ℤ (∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) ↔ (∃𝑝 ∈ ℤ ∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2)))) | |
9 | reeanv 2634 | . . . . 5 ⊢ (∃𝑞 ∈ ℤ ∃𝑦 ∈ ℤ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) ↔ (∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2)))) | |
10 | 2sqlem5.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
11 | 10 | ad2antrr 480 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑁 ∈ ℕ) |
12 | 2sqlem5.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
13 | 12 | ad2antrr 480 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑃 ∈ ℙ) |
14 | simplrr 526 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑥 ∈ ℤ) | |
15 | simprlr 528 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑦 ∈ ℤ) | |
16 | simplrl 525 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑝 ∈ ℤ) | |
17 | simprll 527 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑞 ∈ ℤ) | |
18 | simprrr 530 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) | |
19 | simprrl 529 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑃 = ((𝑝↑2) + (𝑞↑2))) | |
20 | 2, 11, 13, 14, 15, 16, 17, 18, 19 | 2sqlem4 13554 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑁 ∈ 𝑆) |
21 | 20 | expr 373 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ (𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) → 𝑁 ∈ 𝑆)) |
22 | 21 | rexlimdvva 2590 | . . . . 5 ⊢ ((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → (∃𝑞 ∈ ℤ ∃𝑦 ∈ ℤ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) → 𝑁 ∈ 𝑆)) |
23 | 9, 22 | syl5bir 152 | . . . 4 ⊢ ((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → ((∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) → 𝑁 ∈ 𝑆)) |
24 | 23 | rexlimdvva 2590 | . . 3 ⊢ (𝜑 → (∃𝑝 ∈ ℤ ∃𝑥 ∈ ℤ (∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) → 𝑁 ∈ 𝑆)) |
25 | 8, 24 | syl5bir 152 | . 2 ⊢ (𝜑 → ((∃𝑝 ∈ ℤ ∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) → 𝑁 ∈ 𝑆)) |
26 | 4, 7, 25 | mp2and 430 | 1 ⊢ (𝜑 → 𝑁 ∈ 𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ∃wrex 2444 ↦ cmpt 4042 ran crn 4604 ‘cfv 5187 (class class class)co 5841 + caddc 7752 · cmul 7754 ℕcn 8853 2c2 8904 ℤcz 9187 ↑cexp 10450 abscabs 10935 ℙcprime 12035 ℤ[i]cgz 12295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4096 ax-sep 4099 ax-nul 4107 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-iinf 4564 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-mulrcl 7848 ax-addcom 7849 ax-mulcom 7850 ax-addass 7851 ax-mulass 7852 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-1rid 7856 ax-0id 7857 ax-rnegex 7858 ax-precex 7859 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-apti 7864 ax-pre-ltadd 7865 ax-pre-mulgt0 7866 ax-pre-mulext 7867 ax-arch 7868 ax-caucvg 7869 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rmo 2451 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-nul 3409 df-if 3520 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-tr 4080 df-id 4270 df-po 4273 df-iso 4274 df-iord 4343 df-on 4345 df-ilim 4346 df-suc 4348 df-iom 4567 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-1st 6105 df-2nd 6106 df-recs 6269 df-frec 6355 df-1o 6380 df-2o 6381 df-er 6497 df-en 6703 df-sup 6945 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-reap 8469 df-ap 8476 df-div 8565 df-inn 8854 df-2 8912 df-3 8913 df-4 8914 df-n0 9111 df-z 9188 df-uz 9463 df-q 9554 df-rp 9586 df-fz 9941 df-fzo 10074 df-fl 10201 df-mod 10254 df-seqfrec 10377 df-exp 10451 df-cj 10780 df-re 10781 df-im 10782 df-rsqrt 10936 df-abs 10937 df-dvds 11724 df-gcd 11872 df-prm 12036 df-gz 12296 |
This theorem is referenced by: 2sqlem6 13556 |
Copyright terms: Public domain | W3C validator |