ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem5 GIF version

Theorem 2sqlem5 14924
Description: Lemma for 2sq . If a number that is a sum of two squares is divisible by a prime that is a sum of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem5.1 (𝜑𝑁 ∈ ℕ)
2sqlem5.2 (𝜑𝑃 ∈ ℙ)
2sqlem5.3 (𝜑 → (𝑁 · 𝑃) ∈ 𝑆)
2sqlem5.4 (𝜑𝑃𝑆)
Assertion
Ref Expression
2sqlem5 (𝜑𝑁𝑆)

Proof of Theorem 2sqlem5
Dummy variables 𝑝 𝑞 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sqlem5.4 . . 3 (𝜑𝑃𝑆)
2 2sq.1 . . . 4 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
322sqlem2 14920 . . 3 (𝑃𝑆 ↔ ∃𝑝 ∈ ℤ ∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)))
41, 3sylib 122 . 2 (𝜑 → ∃𝑝 ∈ ℤ ∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)))
5 2sqlem5.3 . . 3 (𝜑 → (𝑁 · 𝑃) ∈ 𝑆)
622sqlem2 14920 . . 3 ((𝑁 · 𝑃) ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2)))
75, 6sylib 122 . 2 (𝜑 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2)))
8 reeanv 2660 . . 3 (∃𝑝 ∈ ℤ ∃𝑥 ∈ ℤ (∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) ↔ (∃𝑝 ∈ ℤ ∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))
9 reeanv 2660 . . . . 5 (∃𝑞 ∈ ℤ ∃𝑦 ∈ ℤ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) ↔ (∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))
10 2sqlem5.1 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
1110ad2antrr 488 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑁 ∈ ℕ)
12 2sqlem5.2 . . . . . . . . 9 (𝜑𝑃 ∈ ℙ)
1312ad2antrr 488 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑃 ∈ ℙ)
14 simplrr 536 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑥 ∈ ℤ)
15 simprlr 538 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑦 ∈ ℤ)
16 simplrl 535 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑝 ∈ ℤ)
17 simprll 537 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑞 ∈ ℤ)
18 simprrr 540 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2)))
19 simprrl 539 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑃 = ((𝑝↑2) + (𝑞↑2)))
202, 11, 13, 14, 15, 16, 17, 18, 192sqlem4 14923 . . . . . . 7 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑁𝑆)
2120expr 375 . . . . . 6 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ (𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) → 𝑁𝑆))
2221rexlimdvva 2615 . . . . 5 ((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → (∃𝑞 ∈ ℤ ∃𝑦 ∈ ℤ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) → 𝑁𝑆))
239, 22biimtrrid 153 . . . 4 ((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → ((∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) → 𝑁𝑆))
2423rexlimdvva 2615 . . 3 (𝜑 → (∃𝑝 ∈ ℤ ∃𝑥 ∈ ℤ (∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) → 𝑁𝑆))
258, 24biimtrrid 153 . 2 (𝜑 → ((∃𝑝 ∈ ℤ ∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) → 𝑁𝑆))
264, 7, 25mp2and 433 1 (𝜑𝑁𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160  wrex 2469  cmpt 4079  ran crn 4645  cfv 5235  (class class class)co 5896   + caddc 7844   · cmul 7846  cn 8949  2c2 9000  cz 9283  cexp 10550  abscabs 11038  cprime 12139  ℤ[i]cgz 12401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-mulrcl 7940  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-precex 7951  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-apti 7956  ax-pre-ltadd 7957  ax-pre-mulgt0 7958  ax-pre-mulext 7959  ax-arch 7960  ax-caucvg 7961
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-recs 6330  df-frec 6416  df-1o 6441  df-2o 6442  df-er 6559  df-en 6767  df-sup 7013  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-reap 8562  df-ap 8569  df-div 8660  df-inn 8950  df-2 9008  df-3 9009  df-4 9010  df-n0 9207  df-z 9284  df-uz 9559  df-q 9650  df-rp 9684  df-fz 10039  df-fzo 10173  df-fl 10301  df-mod 10354  df-seqfrec 10477  df-exp 10551  df-cj 10883  df-re 10884  df-im 10885  df-rsqrt 11039  df-abs 11040  df-dvds 11827  df-gcd 11976  df-prm 12140  df-gz 12402
This theorem is referenced by:  2sqlem6  14925
  Copyright terms: Public domain W3C validator