ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem5 GIF version

Theorem 2sqlem5 15792
Description: Lemma for 2sq . If a number that is a sum of two squares is divisible by a prime that is a sum of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem5.1 (𝜑𝑁 ∈ ℕ)
2sqlem5.2 (𝜑𝑃 ∈ ℙ)
2sqlem5.3 (𝜑 → (𝑁 · 𝑃) ∈ 𝑆)
2sqlem5.4 (𝜑𝑃𝑆)
Assertion
Ref Expression
2sqlem5 (𝜑𝑁𝑆)

Proof of Theorem 2sqlem5
Dummy variables 𝑝 𝑞 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sqlem5.4 . . 3 (𝜑𝑃𝑆)
2 2sq.1 . . . 4 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
322sqlem2 15788 . . 3 (𝑃𝑆 ↔ ∃𝑝 ∈ ℤ ∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)))
41, 3sylib 122 . 2 (𝜑 → ∃𝑝 ∈ ℤ ∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)))
5 2sqlem5.3 . . 3 (𝜑 → (𝑁 · 𝑃) ∈ 𝑆)
622sqlem2 15788 . . 3 ((𝑁 · 𝑃) ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2)))
75, 6sylib 122 . 2 (𝜑 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2)))
8 reeanv 2701 . . 3 (∃𝑝 ∈ ℤ ∃𝑥 ∈ ℤ (∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) ↔ (∃𝑝 ∈ ℤ ∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))
9 reeanv 2701 . . . . 5 (∃𝑞 ∈ ℤ ∃𝑦 ∈ ℤ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) ↔ (∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))
10 2sqlem5.1 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
1110ad2antrr 488 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑁 ∈ ℕ)
12 2sqlem5.2 . . . . . . . . 9 (𝜑𝑃 ∈ ℙ)
1312ad2antrr 488 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑃 ∈ ℙ)
14 simplrr 536 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑥 ∈ ℤ)
15 simprlr 538 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑦 ∈ ℤ)
16 simplrl 535 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑝 ∈ ℤ)
17 simprll 537 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑞 ∈ ℤ)
18 simprrr 540 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2)))
19 simprrl 539 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑃 = ((𝑝↑2) + (𝑞↑2)))
202, 11, 13, 14, 15, 16, 17, 18, 192sqlem4 15791 . . . . . . 7 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ ((𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))))) → 𝑁𝑆)
2120expr 375 . . . . . 6 (((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) ∧ (𝑞 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) → 𝑁𝑆))
2221rexlimdvva 2656 . . . . 5 ((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → (∃𝑞 ∈ ℤ ∃𝑦 ∈ ℤ (𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) → 𝑁𝑆))
239, 22biimtrrid 153 . . . 4 ((𝜑 ∧ (𝑝 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → ((∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) → 𝑁𝑆))
2423rexlimdvva 2656 . . 3 (𝜑 → (∃𝑝 ∈ ℤ ∃𝑥 ∈ ℤ (∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) → 𝑁𝑆))
258, 24biimtrrid 153 . 2 (𝜑 → ((∃𝑝 ∈ ℤ ∃𝑞 ∈ ℤ 𝑃 = ((𝑝↑2) + (𝑞↑2)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑁 · 𝑃) = ((𝑥↑2) + (𝑦↑2))) → 𝑁𝑆))
264, 7, 25mp2and 433 1 (𝜑𝑁𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wrex 2509  cmpt 4144  ran crn 4719  cfv 5317  (class class class)co 6000   + caddc 7998   · cmul 8000  cn 9106  2c2 9157  cz 9442  cexp 10755  abscabs 11503  cprime 12624  ℤ[i]cgz 12887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-2o 6561  df-er 6678  df-en 6886  df-sup 7147  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-dvds 12294  df-gcd 12470  df-prm 12625  df-gz 12888
This theorem is referenced by:  2sqlem6  15793
  Copyright terms: Public domain W3C validator