![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pcxcl | GIF version |
Description: Extended real closure of the general prime count function. (Contributed by Mario Carneiro, 3-Oct-2014.) |
Ref | Expression |
---|---|
pcxcl | ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ) → (𝑃 pCnt 𝑁) ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pc0 12339 | . . . . 5 ⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 0) = +∞) | |
2 | pnfxr 8041 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
3 | 1, 2 | eqeltrdi 2280 | . . . 4 ⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 0) ∈ ℝ*) |
4 | 3 | adantr 276 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ) → (𝑃 pCnt 0) ∈ ℝ*) |
5 | oveq2 5905 | . . . 4 ⊢ (𝑁 = 0 → (𝑃 pCnt 𝑁) = (𝑃 pCnt 0)) | |
6 | 5 | eleq1d 2258 | . . 3 ⊢ (𝑁 = 0 → ((𝑃 pCnt 𝑁) ∈ ℝ* ↔ (𝑃 pCnt 0) ∈ ℝ*)) |
7 | 4, 6 | syl5ibrcom 157 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ) → (𝑁 = 0 → (𝑃 pCnt 𝑁) ∈ ℝ*)) |
8 | df-ne 2361 | . . 3 ⊢ (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0) | |
9 | pcqcl 12341 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) ∈ ℤ) | |
10 | 9 | zred 9406 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) ∈ ℝ) |
11 | 10 | rexrd 8038 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) ∈ ℝ*) |
12 | 11 | expr 375 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ) → (𝑁 ≠ 0 → (𝑃 pCnt 𝑁) ∈ ℝ*)) |
13 | 8, 12 | biimtrrid 153 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ) → (¬ 𝑁 = 0 → (𝑃 pCnt 𝑁) ∈ ℝ*)) |
14 | simpr 110 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ) → 𝑁 ∈ ℚ) | |
15 | 0z 9295 | . . . 4 ⊢ 0 ∈ ℤ | |
16 | zq 9658 | . . . 4 ⊢ (0 ∈ ℤ → 0 ∈ ℚ) | |
17 | 15, 16 | ax-mp 5 | . . 3 ⊢ 0 ∈ ℚ |
18 | qdceq 10279 | . . . 4 ⊢ ((𝑁 ∈ ℚ ∧ 0 ∈ ℚ) → DECID 𝑁 = 0) | |
19 | exmiddc 837 | . . . 4 ⊢ (DECID 𝑁 = 0 → (𝑁 = 0 ∨ ¬ 𝑁 = 0)) | |
20 | 18, 19 | syl 14 | . . 3 ⊢ ((𝑁 ∈ ℚ ∧ 0 ∈ ℚ) → (𝑁 = 0 ∨ ¬ 𝑁 = 0)) |
21 | 14, 17, 20 | sylancl 413 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ) → (𝑁 = 0 ∨ ¬ 𝑁 = 0)) |
22 | 7, 13, 21 | mpjaod 719 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ) → (𝑃 pCnt 𝑁) ∈ ℝ*) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 = wceq 1364 ∈ wcel 2160 ≠ wne 2360 (class class class)co 5897 0cc0 7842 +∞cpnf 8020 ℝ*cxr 8022 ℤcz 9284 ℚcq 9651 ℙcprime 12142 pCnt cpc 12319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-iinf 4605 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-mulrcl 7941 ax-addcom 7942 ax-mulcom 7943 ax-addass 7944 ax-mulass 7945 ax-distr 7946 ax-i2m1 7947 ax-0lt1 7948 ax-1rid 7949 ax-0id 7950 ax-rnegex 7951 ax-precex 7952 ax-cnre 7953 ax-pre-ltirr 7954 ax-pre-ltwlin 7955 ax-pre-lttrn 7956 ax-pre-apti 7957 ax-pre-ltadd 7958 ax-pre-mulgt0 7959 ax-pre-mulext 7960 ax-arch 7961 ax-caucvg 7962 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4311 df-po 4314 df-iso 4315 df-iord 4384 df-on 4386 df-ilim 4387 df-suc 4389 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-isom 5244 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-1st 6166 df-2nd 6167 df-recs 6331 df-frec 6417 df-1o 6442 df-2o 6443 df-er 6560 df-en 6768 df-sup 7014 df-inf 7015 df-pnf 8025 df-mnf 8026 df-xr 8027 df-ltxr 8028 df-le 8029 df-sub 8161 df-neg 8162 df-reap 8563 df-ap 8570 df-div 8661 df-inn 8951 df-2 9009 df-3 9010 df-4 9011 df-n0 9208 df-z 9285 df-uz 9560 df-q 9652 df-rp 9686 df-fz 10041 df-fzo 10175 df-fl 10303 df-mod 10356 df-seqfrec 10479 df-exp 10554 df-cj 10886 df-re 10887 df-im 10888 df-rsqrt 11042 df-abs 11043 df-dvds 11830 df-gcd 11979 df-prm 12143 df-pc 12320 |
This theorem is referenced by: pcdvdstr 12362 pcgcd1 12363 pc2dvds 12365 pc11 12366 pcadd 12375 pcadd2 12376 |
Copyright terms: Public domain | W3C validator |