Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl5bir | Unicode version |
Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl5bir.1 | |
syl5bir.2 |
Ref | Expression |
---|---|
syl5bir |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5bir.1 | . . 3 | |
2 | 1 | biimpri 132 | . 2 |
3 | syl5bir.2 | . 2 | |
4 | 2, 3 | syl5 32 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3imtr3g 203 19.37-1 1662 mo3h 2067 necon1bidc 2387 necon4aidc 2403 r19.30dc 2612 ceqex 2852 ssdisj 3464 ralidm 3508 exmid1dc 4178 rexxfrd 4440 sucprcreg 4525 imain 5269 f0rn0 5381 funopfv 5525 mpteqb 5575 funfvima 5715 fliftfun 5763 iinerm 6569 eroveu 6588 th3qlem1 6599 updjudhf 7040 elni2 7251 genpdisj 7460 lttri3 7974 nn0ltexp2 10619 zfz1iso 10750 cau3lem 11052 maxleast 11151 rexanre 11158 climcau 11284 summodc 11320 mertenslem2 11473 prodmodclem2 11514 prodmodc 11515 fprodseq 11520 divgcdcoprmex 12030 prmind2 12048 pcqmul 12231 pcxcl 12239 pcadd 12267 mul4sq 12320 opnneiid 12764 txuni2 12856 txbas 12858 txbasval 12867 txlm 12879 blin2 13032 tgqioo 13147 2sqlem5 13555 bj-charfunr 13652 |
Copyright terms: Public domain | W3C validator |