![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5bir | Unicode version |
Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl5bir.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl5bir.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl5bir |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5bir.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpri 131 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | syl5bir.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | syl5 32 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: 3imtr3g 202 19.37-1 1609 mo3h 2001 necon1bidc 2307 necon4aidc 2323 ceqex 2744 ssdisj 3339 ralidm 3382 rexxfrd 4285 sucprcreg 4365 imain 5096 f0rn0 5205 funopfv 5344 mpteqb 5393 funfvima 5526 fliftfun 5575 iinerm 6364 eroveu 6383 th3qlem1 6394 updjudhf 6770 elni2 6873 genpdisj 7082 lttri3 7565 zfz1iso 10246 cau3lem 10547 maxleast 10646 rexanre 10653 climcau 10736 isummo 10773 mertenslem2 10930 divgcdcoprmex 11362 prmind2 11380 |
Copyright terms: Public domain | W3C validator |