Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl5ib | GIF version |
Description: A mixed syllogism inference. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl5ib.1 | ⊢ (𝜑 → 𝜓) |
syl5ib.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
syl5ib | ⊢ (𝜒 → (𝜑 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5ib.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl5ib.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
3 | 2 | biimpd 143 | . 2 ⊢ (𝜒 → (𝜓 → 𝜃)) |
4 | 1, 3 | syl5 32 | 1 ⊢ (𝜒 → (𝜑 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: syl5ibcom 154 syl5ibr 155 sbft 1836 gencl 2758 spsbc 2962 prexg 4189 posng 4676 sosng 4677 optocl 4680 relcnvexb 5143 funimass1 5265 dmfex 5377 f1ocnvb 5446 eqfnfv2 5584 elpreima 5604 dff13 5736 f1ocnvfv 5747 f1ocnvfvb 5748 fliftfun 5764 eusvobj2 5828 mpoxopn0yelv 6207 rntpos 6225 erexb 6526 findcard2 6855 findcard2s 6856 xpfi 6895 sbthlemi3 6924 enq0tr 7375 addnqprllem 7468 addnqprulem 7469 distrlem1prl 7523 distrlem1pru 7524 recexprlem1ssl 7574 recexprlem1ssu 7575 elrealeu 7770 addcan 8078 addcan2 8079 neg11 8149 negreb 8163 mulcanapd 8558 receuap 8566 cju 8856 nn1suc 8876 nnaddcl 8877 nndivtr 8899 znegclb 9224 zaddcllempos 9228 zmulcl 9244 zeo 9296 uz11 9488 uzp1 9499 eqreznegel 9552 xneg11 9770 xnegdi 9804 modqadd1 10296 modqmul1 10312 frec2uzltd 10338 bccmpl 10667 fz1eqb 10704 cj11 10847 rennim 10944 resqrexlemgt0 10962 efne0 11619 dvdsabseq 11785 pcfac 12280 uptx 12914 hmeocnvb 12958 tgioo 13186 bj-nnbidc 13638 bj-prexg 13793 strcollnft 13866 |
Copyright terms: Public domain | W3C validator |