![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5ib | GIF version |
Description: A mixed syllogism inference. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl5ib.1 | ⊢ (𝜑 → 𝜓) |
syl5ib.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
syl5ib | ⊢ (𝜒 → (𝜑 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5ib.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl5ib.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
3 | 2 | biimpd 143 | . 2 ⊢ (𝜒 → (𝜓 → 𝜃)) |
4 | 1, 3 | syl5 32 | 1 ⊢ (𝜒 → (𝜑 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: syl5ibcom 154 syl5ibr 155 sbft 1777 gencl 2652 spsbc 2852 prexg 4047 posng 4523 sosng 4524 optocl 4527 relcnvexb 4983 funimass1 5104 dmfex 5213 f1ocnvb 5280 eqfnfv2 5412 elpreima 5432 dff13 5561 f1ocnvfv 5572 f1ocnvfvb 5573 fliftfun 5589 eusvobj2 5652 mpt2xopn0yelv 6018 rntpos 6036 erexb 6331 findcard2 6659 findcard2s 6660 xpfi 6694 sbthlemi3 6722 enq0tr 7047 addnqprllem 7140 addnqprulem 7141 distrlem1prl 7195 distrlem1pru 7196 recexprlem1ssl 7246 recexprlem1ssu 7247 elrealeu 7421 addcan 7716 addcan2 7717 neg11 7787 negreb 7801 mulcanapd 8184 receuap 8192 cju 8475 nn1suc 8495 nnaddcl 8496 nndivtr 8518 znegclb 8837 zaddcllempos 8841 zmulcl 8857 zeo 8905 uz11 9095 uzp1 9106 eqreznegel 9153 xneg11 9350 modqadd1 9822 modqmul1 9838 frec2uzltd 9864 bccmpl 10216 fz1eqb 10253 cj11 10393 rennim 10489 resqrexlemgt0 10507 efne0 11022 dvdsabseq 11180 bj-prexg 12068 strcollnft 12145 |
Copyright terms: Public domain | W3C validator |