ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lttri3 GIF version

Theorem lttri3 8106
Description: Tightness of real apartness. (Contributed by NM, 5-May-1999.)
Assertion
Ref Expression
lttri3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))

Proof of Theorem lttri3
StepHypRef Expression
1 ltnr 8103 . . . . 5 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
2 breq2 4037 . . . . . 6 (𝐴 = 𝐵 → (𝐴 < 𝐴𝐴 < 𝐵))
32notbid 668 . . . . 5 (𝐴 = 𝐵 → (¬ 𝐴 < 𝐴 ↔ ¬ 𝐴 < 𝐵))
41, 3syl5ibcom 155 . . . 4 (𝐴 ∈ ℝ → (𝐴 = 𝐵 → ¬ 𝐴 < 𝐵))
5 breq1 4036 . . . . . 6 (𝐴 = 𝐵 → (𝐴 < 𝐴𝐵 < 𝐴))
65notbid 668 . . . . 5 (𝐴 = 𝐵 → (¬ 𝐴 < 𝐴 ↔ ¬ 𝐵 < 𝐴))
71, 6syl5ibcom 155 . . . 4 (𝐴 ∈ ℝ → (𝐴 = 𝐵 → ¬ 𝐵 < 𝐴))
84, 7jcad 307 . . 3 (𝐴 ∈ ℝ → (𝐴 = 𝐵 → (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
98adantr 276 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 → (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
10 ioran 753 . . 3 (¬ (𝐴 < 𝐵𝐵 < 𝐴) ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
11 axapti 8097 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 < 𝐵𝐵 < 𝐴)) → 𝐴 = 𝐵)
12113expia 1207 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ (𝐴 < 𝐵𝐵 < 𝐴) → 𝐴 = 𝐵))
1310, 12biimtrrid 153 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴) → 𝐴 = 𝐵))
149, 13impbid 129 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2167   class class class wbr 4033  cr 7878   < clt 8061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-pre-ltirr 7991  ax-pre-apti 7994
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-pnf 8063  df-mnf 8064  df-ltxr 8066
This theorem is referenced by:  letri3  8107  lttri3i  8124  lttri3d  8141  inelr  8611  lbinf  8975  suprubex  8978  suprlubex  8979  suprleubex  8981  sup3exmid  8984  suprzclex  9424  infrenegsupex  9668  supminfex  9671  infregelbex  9672  xrlttri3  9872  zsupcl  10321  zssinfcl  10322  infssuzledc  10324  suprzcl2dc  10329  maxleim  11370  maxabs  11374  maxleast  11378  dvdslegcd  12131  bezoutlemsup  12176  dfgcd2  12181  lcmgcdlem  12245  suplociccex  14861  pilem3  15019  taupi  15717
  Copyright terms: Public domain W3C validator