| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lttri3 | GIF version | ||
| Description: Tightness of real apartness. (Contributed by NM, 5-May-1999.) |
| Ref | Expression |
|---|---|
| lttri3 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltnr 8231 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) | |
| 2 | breq2 4087 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐴 < 𝐴 ↔ 𝐴 < 𝐵)) | |
| 3 | 2 | notbid 671 | . . . . 5 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 < 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
| 4 | 1, 3 | syl5ibcom 155 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 = 𝐵 → ¬ 𝐴 < 𝐵)) |
| 5 | breq1 4086 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐴 < 𝐴 ↔ 𝐵 < 𝐴)) | |
| 6 | 5 | notbid 671 | . . . . 5 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 < 𝐴 ↔ ¬ 𝐵 < 𝐴)) |
| 7 | 1, 6 | syl5ibcom 155 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 = 𝐵 → ¬ 𝐵 < 𝐴)) |
| 8 | 4, 7 | jcad 307 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 = 𝐵 → (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) |
| 9 | 8 | adantr 276 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 → (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) |
| 10 | ioran 757 | . . 3 ⊢ (¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴) ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)) | |
| 11 | axapti 8225 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴)) → 𝐴 = 𝐵) | |
| 12 | 11 | 3expia 1229 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴) → 𝐴 = 𝐵)) |
| 13 | 10, 12 | biimtrrid 153 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴) → 𝐴 = 𝐵)) |
| 14 | 9, 13 | impbid 129 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 = wceq 1395 ∈ wcel 2200 class class class wbr 4083 ℝcr 8006 < clt 8189 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-pre-ltirr 8119 ax-pre-apti 8122 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-pnf 8191 df-mnf 8192 df-ltxr 8194 |
| This theorem is referenced by: letri3 8235 lttri3i 8252 lttri3d 8269 inelr 8739 lbinf 9103 suprubex 9106 suprlubex 9107 suprleubex 9109 sup3exmid 9112 suprzclex 9553 infrenegsupex 9797 supminfex 9800 infregelbex 9801 xrlttri3 10001 zsupcl 10459 zssinfcl 10460 infssuzledc 10462 suprzcl2dc 10467 maxleim 11724 maxabs 11728 maxleast 11732 dvdslegcd 12493 bezoutlemsup 12538 dfgcd2 12543 lcmgcdlem 12607 suplociccex 15307 pilem3 15465 taupi 16471 |
| Copyright terms: Public domain | W3C validator |