ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lttri3 GIF version

Theorem lttri3 8125
Description: Tightness of real apartness. (Contributed by NM, 5-May-1999.)
Assertion
Ref Expression
lttri3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))

Proof of Theorem lttri3
StepHypRef Expression
1 ltnr 8122 . . . . 5 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
2 breq2 4038 . . . . . 6 (𝐴 = 𝐵 → (𝐴 < 𝐴𝐴 < 𝐵))
32notbid 668 . . . . 5 (𝐴 = 𝐵 → (¬ 𝐴 < 𝐴 ↔ ¬ 𝐴 < 𝐵))
41, 3syl5ibcom 155 . . . 4 (𝐴 ∈ ℝ → (𝐴 = 𝐵 → ¬ 𝐴 < 𝐵))
5 breq1 4037 . . . . . 6 (𝐴 = 𝐵 → (𝐴 < 𝐴𝐵 < 𝐴))
65notbid 668 . . . . 5 (𝐴 = 𝐵 → (¬ 𝐴 < 𝐴 ↔ ¬ 𝐵 < 𝐴))
71, 6syl5ibcom 155 . . . 4 (𝐴 ∈ ℝ → (𝐴 = 𝐵 → ¬ 𝐵 < 𝐴))
84, 7jcad 307 . . 3 (𝐴 ∈ ℝ → (𝐴 = 𝐵 → (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
98adantr 276 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 → (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
10 ioran 753 . . 3 (¬ (𝐴 < 𝐵𝐵 < 𝐴) ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
11 axapti 8116 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 < 𝐵𝐵 < 𝐴)) → 𝐴 = 𝐵)
12113expia 1207 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ (𝐴 < 𝐵𝐵 < 𝐴) → 𝐴 = 𝐵))
1310, 12biimtrrid 153 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴) → 𝐴 = 𝐵))
149, 13impbid 129 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2167   class class class wbr 4034  cr 7897   < clt 8080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-pre-ltirr 8010  ax-pre-apti 8013
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-xp 4670  df-pnf 8082  df-mnf 8083  df-ltxr 8085
This theorem is referenced by:  letri3  8126  lttri3i  8143  lttri3d  8160  inelr  8630  lbinf  8994  suprubex  8997  suprlubex  8998  suprleubex  9000  sup3exmid  9003  suprzclex  9443  infrenegsupex  9687  supminfex  9690  infregelbex  9691  xrlttri3  9891  zsupcl  10340  zssinfcl  10341  infssuzledc  10343  suprzcl2dc  10348  maxleim  11389  maxabs  11393  maxleast  11397  dvdslegcd  12158  bezoutlemsup  12203  dfgcd2  12208  lcmgcdlem  12272  suplociccex  14969  pilem3  15127  taupi  15830
  Copyright terms: Public domain W3C validator