| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lttri3 | GIF version | ||
| Description: Tightness of real apartness. (Contributed by NM, 5-May-1999.) |
| Ref | Expression |
|---|---|
| lttri3 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltnr 8211 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) | |
| 2 | breq2 4086 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐴 < 𝐴 ↔ 𝐴 < 𝐵)) | |
| 3 | 2 | notbid 671 | . . . . 5 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 < 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
| 4 | 1, 3 | syl5ibcom 155 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 = 𝐵 → ¬ 𝐴 < 𝐵)) |
| 5 | breq1 4085 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐴 < 𝐴 ↔ 𝐵 < 𝐴)) | |
| 6 | 5 | notbid 671 | . . . . 5 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 < 𝐴 ↔ ¬ 𝐵 < 𝐴)) |
| 7 | 1, 6 | syl5ibcom 155 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 = 𝐵 → ¬ 𝐵 < 𝐴)) |
| 8 | 4, 7 | jcad 307 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 = 𝐵 → (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) |
| 9 | 8 | adantr 276 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 → (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) |
| 10 | ioran 757 | . . 3 ⊢ (¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴) ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)) | |
| 11 | axapti 8205 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴)) → 𝐴 = 𝐵) | |
| 12 | 11 | 3expia 1229 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴) → 𝐴 = 𝐵)) |
| 13 | 10, 12 | biimtrrid 153 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴) → 𝐴 = 𝐵)) |
| 14 | 9, 13 | impbid 129 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 = wceq 1395 ∈ wcel 2200 class class class wbr 4082 ℝcr 7986 < clt 8169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-pre-ltirr 8099 ax-pre-apti 8102 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4722 df-pnf 8171 df-mnf 8172 df-ltxr 8174 |
| This theorem is referenced by: letri3 8215 lttri3i 8232 lttri3d 8249 inelr 8719 lbinf 9083 suprubex 9086 suprlubex 9087 suprleubex 9089 sup3exmid 9092 suprzclex 9533 infrenegsupex 9777 supminfex 9780 infregelbex 9781 xrlttri3 9981 zsupcl 10438 zssinfcl 10439 infssuzledc 10441 suprzcl2dc 10446 maxleim 11702 maxabs 11706 maxleast 11710 dvdslegcd 12471 bezoutlemsup 12516 dfgcd2 12521 lcmgcdlem 12585 suplociccex 15284 pilem3 15442 taupi 16372 |
| Copyright terms: Public domain | W3C validator |