ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lttri3 GIF version

Theorem lttri3 8214
Description: Tightness of real apartness. (Contributed by NM, 5-May-1999.)
Assertion
Ref Expression
lttri3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))

Proof of Theorem lttri3
StepHypRef Expression
1 ltnr 8211 . . . . 5 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
2 breq2 4086 . . . . . 6 (𝐴 = 𝐵 → (𝐴 < 𝐴𝐴 < 𝐵))
32notbid 671 . . . . 5 (𝐴 = 𝐵 → (¬ 𝐴 < 𝐴 ↔ ¬ 𝐴 < 𝐵))
41, 3syl5ibcom 155 . . . 4 (𝐴 ∈ ℝ → (𝐴 = 𝐵 → ¬ 𝐴 < 𝐵))
5 breq1 4085 . . . . . 6 (𝐴 = 𝐵 → (𝐴 < 𝐴𝐵 < 𝐴))
65notbid 671 . . . . 5 (𝐴 = 𝐵 → (¬ 𝐴 < 𝐴 ↔ ¬ 𝐵 < 𝐴))
71, 6syl5ibcom 155 . . . 4 (𝐴 ∈ ℝ → (𝐴 = 𝐵 → ¬ 𝐵 < 𝐴))
84, 7jcad 307 . . 3 (𝐴 ∈ ℝ → (𝐴 = 𝐵 → (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
98adantr 276 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 → (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
10 ioran 757 . . 3 (¬ (𝐴 < 𝐵𝐵 < 𝐴) ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
11 axapti 8205 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 < 𝐵𝐵 < 𝐴)) → 𝐴 = 𝐵)
12113expia 1229 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ (𝐴 < 𝐵𝐵 < 𝐴) → 𝐴 = 𝐵))
1310, 12biimtrrid 153 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴) → 𝐴 = 𝐵))
149, 13impbid 129 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wcel 2200   class class class wbr 4082  cr 7986   < clt 8169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-pre-ltirr 8099  ax-pre-apti 8102
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4722  df-pnf 8171  df-mnf 8172  df-ltxr 8174
This theorem is referenced by:  letri3  8215  lttri3i  8232  lttri3d  8249  inelr  8719  lbinf  9083  suprubex  9086  suprlubex  9087  suprleubex  9089  sup3exmid  9092  suprzclex  9533  infrenegsupex  9777  supminfex  9780  infregelbex  9781  xrlttri3  9981  zsupcl  10438  zssinfcl  10439  infssuzledc  10441  suprzcl2dc  10446  maxleim  11702  maxabs  11706  maxleast  11710  dvdslegcd  12471  bezoutlemsup  12516  dfgcd2  12521  lcmgcdlem  12585  suplociccex  15284  pilem3  15442  taupi  16372
  Copyright terms: Public domain W3C validator