![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lttri3 | GIF version |
Description: Tightness of real apartness. (Contributed by NM, 5-May-1999.) |
Ref | Expression |
---|---|
lttri3 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltnr 8096 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) | |
2 | breq2 4033 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐴 < 𝐴 ↔ 𝐴 < 𝐵)) | |
3 | 2 | notbid 668 | . . . . 5 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 < 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
4 | 1, 3 | syl5ibcom 155 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 = 𝐵 → ¬ 𝐴 < 𝐵)) |
5 | breq1 4032 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐴 < 𝐴 ↔ 𝐵 < 𝐴)) | |
6 | 5 | notbid 668 | . . . . 5 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 < 𝐴 ↔ ¬ 𝐵 < 𝐴)) |
7 | 1, 6 | syl5ibcom 155 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 = 𝐵 → ¬ 𝐵 < 𝐴)) |
8 | 4, 7 | jcad 307 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 = 𝐵 → (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) |
9 | 8 | adantr 276 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 → (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) |
10 | ioran 753 | . . 3 ⊢ (¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴) ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)) | |
11 | axapti 8090 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴)) → 𝐴 = 𝐵) | |
12 | 11 | 3expia 1207 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴) → 𝐴 = 𝐵)) |
13 | 10, 12 | biimtrrid 153 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴) → 𝐴 = 𝐵)) |
14 | 9, 13 | impbid 129 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 ℝcr 7871 < clt 8054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-pre-ltirr 7984 ax-pre-apti 7987 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-xp 4665 df-pnf 8056 df-mnf 8057 df-ltxr 8059 |
This theorem is referenced by: letri3 8100 lttri3i 8117 lttri3d 8134 inelr 8603 lbinf 8967 suprubex 8970 suprlubex 8971 suprleubex 8973 sup3exmid 8976 suprzclex 9415 infrenegsupex 9659 supminfex 9662 infregelbex 9663 xrlttri3 9863 maxleim 11349 maxabs 11353 maxleast 11357 zsupcl 12084 zssinfcl 12085 infssuzledc 12087 suprzcl2dc 12092 dvdslegcd 12101 bezoutlemsup 12146 dfgcd2 12151 lcmgcdlem 12215 suplociccex 14779 pilem3 14918 taupi 15563 |
Copyright terms: Public domain | W3C validator |