![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1st2nd2 | GIF version |
Description: Reconstruction of a member of a cross product in terms of its ordered pair components. (Contributed by NM, 20-Oct-2013.) |
Ref | Expression |
---|---|
1st2nd2 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp6 6187 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) | |
2 | 1 | simplbi 274 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1363 ∈ wcel 2159 〈cop 3609 × cxp 4638 ‘cfv 5230 1st c1st 6156 2nd c2nd 6157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2161 ax-14 2162 ax-ext 2170 ax-sep 4135 ax-pow 4188 ax-pr 4223 ax-un 4447 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2040 df-mo 2041 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ral 2472 df-rex 2473 df-v 2753 df-sbc 2977 df-un 3147 df-in 3149 df-ss 3156 df-pw 3591 df-sn 3612 df-pr 3613 df-op 3615 df-uni 3824 df-br 4018 df-opab 4079 df-mpt 4080 df-id 4307 df-xp 4646 df-rel 4647 df-cnv 4648 df-co 4649 df-dm 4650 df-rn 4651 df-iota 5192 df-fun 5232 df-fv 5238 df-1st 6158 df-2nd 6159 |
This theorem is referenced by: xpopth 6194 eqop 6195 2nd1st 6198 1st2nd 6199 xpmapenlem 6866 djuf1olem 7069 exmidapne 7276 dfplpq2 7370 dfmpq2 7371 enqbreq2 7373 enqdc1 7378 preqlu 7488 prop 7491 elnp1st2nd 7492 cauappcvgprlemladd 7674 elreal2 7846 cnref1o 9667 frecuzrdgrrn 10425 frec2uzrdg 10426 frecuzrdgrcl 10427 frecuzrdgsuc 10431 frecuzrdgrclt 10432 frecuzrdgg 10433 frecuzrdgdomlem 10434 frecuzrdgfunlem 10436 frecuzrdgsuctlem 10440 seq3val 10475 seqvalcd 10476 eucalgval 12071 eucalginv 12073 eucalglt 12074 eucalg 12076 sqpweven 12192 2sqpwodd 12193 qnumdenbi 12209 xpsff1o 12790 tx1cn 14152 tx2cn 14153 txdis 14160 psmetxrge0 14215 xmetxpbl 14391 |
Copyright terms: Public domain | W3C validator |