ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1st2nd2 GIF version

Theorem 1st2nd2 6230
Description: Reconstruction of a member of a cross product in terms of its ordered pair components. (Contributed by NM, 20-Oct-2013.)
Assertion
Ref Expression
1st2nd2 (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)

Proof of Theorem 1st2nd2
StepHypRef Expression
1 elxp6 6224 . 2 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))
21simplbi 274 1 (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  cop 3622   × cxp 4658  cfv 5255  1st c1st 6193  2nd c2nd 6194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-iota 5216  df-fun 5257  df-fv 5263  df-1st 6195  df-2nd 6196
This theorem is referenced by:  xpopth  6231  eqop  6232  2nd1st  6235  1st2nd  6236  xpmapenlem  6907  opabfi  6994  djuf1olem  7114  exmidapne  7322  dfplpq2  7416  dfmpq2  7417  enqbreq2  7419  enqdc1  7424  preqlu  7534  prop  7537  elnp1st2nd  7538  cauappcvgprlemladd  7720  elreal2  7892  cnref1o  9719  frecuzrdgrrn  10482  frec2uzrdg  10483  frecuzrdgrcl  10484  frecuzrdgsuc  10488  frecuzrdgrclt  10489  frecuzrdgg  10490  frecuzrdgdomlem  10491  frecuzrdgfunlem  10493  frecuzrdgsuctlem  10497  seq3val  10534  seqvalcd  10535  eucalgval  12195  eucalginv  12197  eucalglt  12198  eucalg  12200  sqpweven  12316  2sqpwodd  12317  qnumdenbi  12333  xpsff1o  12935  tx1cn  14448  tx2cn  14449  txdis  14456  psmetxrge0  14511  xmetxpbl  14687
  Copyright terms: Public domain W3C validator