| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1st2nd2 | GIF version | ||
| Description: Reconstruction of a member of a cross product in terms of its ordered pair components. (Contributed by NM, 20-Oct-2013.) |
| Ref | Expression |
|---|---|
| 1st2nd2 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp6 6313 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 〈cop 3669 × cxp 4716 ‘cfv 5317 1st c1st 6282 2nd c2nd 6283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-iota 5277 df-fun 5319 df-fv 5325 df-1st 6284 df-2nd 6285 |
| This theorem is referenced by: xpopth 6320 eqop 6321 2nd1st 6324 1st2nd 6325 xpmapenlem 7006 opabfi 7096 djuf1olem 7216 exmidapne 7442 dfplpq2 7537 dfmpq2 7538 enqbreq2 7540 enqdc1 7545 preqlu 7655 prop 7658 elnp1st2nd 7659 cauappcvgprlemladd 7841 elreal2 8013 cnref1o 9842 frecuzrdgrrn 10625 frec2uzrdg 10626 frecuzrdgrcl 10627 frecuzrdgsuc 10631 frecuzrdgrclt 10632 frecuzrdgg 10633 frecuzrdgdomlem 10634 frecuzrdgfunlem 10636 frecuzrdgsuctlem 10640 seq3val 10677 seqvalcd 10678 eucalgval 12571 eucalginv 12573 eucalglt 12574 eucalg 12576 sqpweven 12692 2sqpwodd 12693 qnumdenbi 12709 xpsff1o 13377 tx1cn 14937 tx2cn 14938 txdis 14945 psmetxrge0 15000 xmetxpbl 15176 |
| Copyright terms: Public domain | W3C validator |