MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0dom Structured version   Visualization version   GIF version

Theorem 0dom 9024
Description: Any set dominates the empty set. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
0sdom.1 𝐴 ∈ V
Assertion
Ref Expression
0dom ∅ ≼ 𝐴

Proof of Theorem 0dom
StepHypRef Expression
1 0sdom.1 . 2 𝐴 ∈ V
2 0domg 9021 . 2 (𝐴 ∈ V → ∅ ≼ 𝐴)
31, 2ax-mp 5 1 ∅ ≼ 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3436  c0 4284   class class class wbr 5092  cdom 8870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-dom 8874
This theorem is referenced by:  domunsn  9044  mapdom1  9059  mapdom2  9065  fodomfi  9201  fodomfiOLD  9220  marypha1lem  9323  card2inf  9447  iunfictbso  10008  konigthlem  10462  cctop  22891  ovol0  25392  fvconstdomi  48880
  Copyright terms: Public domain W3C validator