Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0dom | Structured version Visualization version GIF version |
Description: Any set dominates the empty set. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
0sdom.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
0dom | ⊢ ∅ ≼ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0sdom.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | 0domg 8840 | . 2 ⊢ (𝐴 ∈ V → ∅ ≼ 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∅ ≼ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 ∅c0 4253 class class class wbr 5070 ≼ cdom 8689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-dom 8693 |
This theorem is referenced by: domunsn 8863 mapdom1 8878 mapdom2 8884 fodomfi 9022 marypha1lem 9122 card2inf 9244 iunfictbso 9801 konigthlem 10255 cctop 22064 ovol0 24562 fvconstdomi 46075 |
Copyright terms: Public domain | W3C validator |