| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0dom | Structured version Visualization version GIF version | ||
| Description: Any set dominates the empty set. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| 0sdom.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| 0dom | ⊢ ∅ ≼ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0sdom.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | 0domg 9017 | . 2 ⊢ (𝐴 ∈ V → ∅ ≼ 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∅ ≼ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 ∅c0 4280 class class class wbr 5089 ≼ cdom 8867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-dom 8871 |
| This theorem is referenced by: domunsn 9040 mapdom1 9055 mapdom2 9061 fodomfi 9196 fodomfiOLD 9214 marypha1lem 9317 card2inf 9441 iunfictbso 10005 konigthlem 10459 cctop 22921 ovol0 25421 fvconstdomi 49002 |
| Copyright terms: Public domain | W3C validator |