![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0dom | Structured version Visualization version GIF version |
Description: Any set dominates the empty set. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
0sdom.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
0dom | ⊢ ∅ ≼ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0sdom.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | 0domg 9166 | . 2 ⊢ (𝐴 ∈ V → ∅ ≼ 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∅ ≼ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 ∅c0 4352 class class class wbr 5166 ≼ cdom 9001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-dom 9005 |
This theorem is referenced by: domunsn 9193 mapdom1 9208 mapdom2 9214 fodomfi 9378 fodomfiOLD 9398 marypha1lem 9502 card2inf 9624 iunfictbso 10183 konigthlem 10637 cctop 23034 ovol0 25547 fvconstdomi 48573 |
Copyright terms: Public domain | W3C validator |