MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0sdomgOLD Structured version   Visualization version   GIF version

Theorem 0sdomgOLD 9144
Description: Obsolete version of 0sdomg 9143 as of 29-Nov-2024. (Contributed by NM, 23-Mar-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
0sdomgOLD (𝐴𝑉 → (∅ ≺ 𝐴𝐴 ≠ ∅))

Proof of Theorem 0sdomgOLD
StepHypRef Expression
1 0domg 9139 . . 3 (𝐴𝑉 → ∅ ≼ 𝐴)
2 brsdom 9014 . . . 4 (∅ ≺ 𝐴 ↔ (∅ ≼ 𝐴 ∧ ¬ ∅ ≈ 𝐴))
32baib 535 . . 3 (∅ ≼ 𝐴 → (∅ ≺ 𝐴 ↔ ¬ ∅ ≈ 𝐴))
41, 3syl 17 . 2 (𝐴𝑉 → (∅ ≺ 𝐴 ↔ ¬ ∅ ≈ 𝐴))
5 ensymb 9041 . . . 4 (∅ ≈ 𝐴𝐴 ≈ ∅)
6 en0 9057 . . . 4 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
75, 6bitri 275 . . 3 (∅ ≈ 𝐴𝐴 = ∅)
87necon3bbii 2986 . 2 (¬ ∅ ≈ 𝐴𝐴 ≠ ∅)
94, 8bitrdi 287 1 (𝐴𝑉 → (∅ ≺ 𝐴𝐴 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1537  wcel 2106  wne 2938  c0 4339   class class class wbr 5148  cen 8981  cdom 8982  csdm 8983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator