MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovol0 Structured version   Visualization version   GIF version

Theorem ovol0 23600
Description: The empty set has 0 outer Lebesgue measure. (Contributed by Mario Carneiro, 17-Mar-2014.)
Assertion
Ref Expression
ovol0 (vol*‘∅) = 0

Proof of Theorem ovol0
StepHypRef Expression
1 0ss 4169 . 2 ∅ ⊆ ℝ
2 nnex 11320 . . 3 ℕ ∈ V
320dom 8333 . 2 ∅ ≼ ℕ
4 ovolctb2 23599 . 2 ((∅ ⊆ ℝ ∧ ∅ ≼ ℕ) → (vol*‘∅) = 0)
51, 3, 4mp2an 684 1 (vol*‘∅) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1653  wss 3770  c0 4116   class class class wbr 4844  cfv 6102  cdom 8194  cr 10224  0cc0 10225  cn 11313  vol*covol 23569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-rep 4965  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184  ax-inf2 8789  ax-cnex 10281  ax-resscn 10282  ax-1cn 10283  ax-icn 10284  ax-addcl 10285  ax-addrcl 10286  ax-mulcl 10287  ax-mulrcl 10288  ax-mulcom 10289  ax-addass 10290  ax-mulass 10291  ax-distr 10292  ax-i2m1 10293  ax-1ne0 10294  ax-1rid 10295  ax-rnegex 10296  ax-rrecex 10297  ax-cnre 10298  ax-pre-lttri 10299  ax-pre-lttrn 10300  ax-pre-ltadd 10301  ax-pre-mulgt0 10302  ax-pre-sup 10303
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-pss 3786  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-tp 4374  df-op 4376  df-uni 4630  df-int 4669  df-iun 4713  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5221  df-eprel 5226  df-po 5234  df-so 5235  df-fr 5272  df-se 5273  df-we 5274  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-pred 5899  df-ord 5945  df-on 5946  df-lim 5947  df-suc 5948  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-f1 6107  df-fo 6108  df-f1o 6109  df-fv 6110  df-isom 6111  df-riota 6840  df-ov 6882  df-oprab 6883  df-mpt2 6884  df-of 7132  df-om 7301  df-1st 7402  df-2nd 7403  df-wrecs 7646  df-recs 7708  df-rdg 7746  df-1o 7800  df-2o 7801  df-oadd 7804  df-er 7983  df-map 8098  df-en 8197  df-dom 8198  df-sdom 8199  df-fin 8200  df-sup 8591  df-inf 8592  df-oi 8658  df-card 9052  df-cda 9279  df-pnf 10366  df-mnf 10367  df-xr 10368  df-ltxr 10369  df-le 10370  df-sub 10559  df-neg 10560  df-div 10978  df-nn 11314  df-2 11375  df-3 11376  df-n0 11580  df-z 11666  df-uz 11930  df-q 12033  df-rp 12074  df-xadd 12193  df-ioo 12427  df-ico 12429  df-icc 12430  df-fz 12580  df-fzo 12720  df-seq 13055  df-exp 13114  df-hash 13370  df-cj 14179  df-re 14180  df-im 14181  df-sqrt 14315  df-abs 14316  df-clim 14559  df-sum 14757  df-xmet 20060  df-met 20061  df-ovol 23571
This theorem is referenced by:  ovolfiniun  23608  ovoliunnul  23614  0mbl  23646  volfiniun  23654  voliunlem3  23659  iccvolcl  23674  ioovolcl  23677  itg1val2  23791  itg11  23798  itg1addlem4  23806  itg1le  23820  itg2cnlem2  23869  itgsplitioo  23944  volmeas  30809  mblfinlem3  33936  ismblfin  33938  ovoliunnfl  33939  voliunnfl  33941  volsupnfl  33942  areacirc  33992  arearect  38580  areaquad  38581  vol0  40913
  Copyright terms: Public domain W3C validator