MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0sdom Structured version   Visualization version   GIF version

Theorem 0sdom 9016
Description: A set strictly dominates the empty set iff it is not empty. (Contributed by NM, 29-Jul-2004.)
Hypothesis
Ref Expression
0sdom.1 𝐴 ∈ V
Assertion
Ref Expression
0sdom (∅ ≺ 𝐴𝐴 ≠ ∅)

Proof of Theorem 0sdom
StepHypRef Expression
1 0sdom.1 . 2 𝐴 ∈ V
2 0sdomg 9014 . 2 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
31, 2ax-mp 5 1 (∅ ≺ 𝐴𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2111  wne 2928  Vcvv 3436  c0 4278   class class class wbr 5086  csdm 8863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-en 8865  df-dom 8866  df-sdom 8867
This theorem is referenced by:  1sdom2  9127  sdom1  9129  marypha1lem  9312  konigthlem  10454  pwcfsdom  10469  cfpwsdom  10470  rankcf  10663  r1tskina  10668  1stcfb  23355  snct  32687  sigapildsys  34167  modelaxreplem1  45011
  Copyright terms: Public domain W3C validator