![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0sdom | Structured version Visualization version GIF version |
Description: A set strictly dominates the empty set iff it is not empty. (Contributed by NM, 29-Jul-2004.) |
Ref | Expression |
---|---|
0sdom.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
0sdom | ⊢ (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0sdom.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | 0sdomg 9128 | . 2 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2099 ≠ wne 2937 Vcvv 3471 ∅c0 4323 class class class wbr 5148 ≺ csdm 8962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-en 8964 df-dom 8965 df-sdom 8966 |
This theorem is referenced by: 1sdom2 9264 sdom1 9266 sdom1OLD 9267 marypha1lem 9456 konigthlem 10591 pwcfsdom 10606 cfpwsdom 10607 rankcf 10800 r1tskina 10805 1stcfb 23348 snct 32495 sigapildsys 33781 |
Copyright terms: Public domain | W3C validator |