|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 0sdom | Structured version Visualization version GIF version | ||
| Description: A set strictly dominates the empty set iff it is not empty. (Contributed by NM, 29-Jul-2004.) | 
| Ref | Expression | 
|---|---|
| 0sdom.1 | ⊢ 𝐴 ∈ V | 
| Ref | Expression | 
|---|---|
| 0sdom | ⊢ (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0sdom.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | 0sdomg 9144 | . 2 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∈ wcel 2108 ≠ wne 2940 Vcvv 3480 ∅c0 4333 class class class wbr 5143 ≺ csdm 8984 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-en 8986 df-dom 8987 df-sdom 8988 | 
| This theorem is referenced by: 1sdom2 9276 sdom1 9278 sdom1OLD 9279 marypha1lem 9473 konigthlem 10608 pwcfsdom 10623 cfpwsdom 10624 rankcf 10817 r1tskina 10822 1stcfb 23453 snct 32725 sigapildsys 34163 modelaxreplem1 44995 | 
| Copyright terms: Public domain | W3C validator |