| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0sdom | Structured version Visualization version GIF version | ||
| Description: A set strictly dominates the empty set iff it is not empty. (Contributed by NM, 29-Jul-2004.) |
| Ref | Expression |
|---|---|
| 0sdom.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| 0sdom | ⊢ (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0sdom.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | 0sdomg 9014 | . 2 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∅c0 4278 class class class wbr 5086 ≺ csdm 8863 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-en 8865 df-dom 8866 df-sdom 8867 |
| This theorem is referenced by: 1sdom2 9127 sdom1 9129 marypha1lem 9312 konigthlem 10454 pwcfsdom 10469 cfpwsdom 10470 rankcf 10663 r1tskina 10668 1stcfb 23355 snct 32687 sigapildsys 34167 modelaxreplem1 45011 |
| Copyright terms: Public domain | W3C validator |