| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0sdom | Structured version Visualization version GIF version | ||
| Description: A set strictly dominates the empty set iff it is not empty. (Contributed by NM, 29-Jul-2004.) |
| Ref | Expression |
|---|---|
| 0sdom.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| 0sdom | ⊢ (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0sdom.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | 0sdomg 9030 | . 2 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 ≠ wne 2925 Vcvv 3438 ∅c0 4286 class class class wbr 5095 ≺ csdm 8878 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-en 8880 df-dom 8881 df-sdom 8882 |
| This theorem is referenced by: 1sdom2 9147 sdom1 9149 marypha1lem 9342 konigthlem 10481 pwcfsdom 10496 cfpwsdom 10497 rankcf 10690 r1tskina 10695 1stcfb 23348 snct 32670 sigapildsys 34128 modelaxreplem1 44952 |
| Copyright terms: Public domain | W3C validator |