| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0sdom | Structured version Visualization version GIF version | ||
| Description: A set strictly dominates the empty set iff it is not empty. (Contributed by NM, 29-Jul-2004.) |
| Ref | Expression |
|---|---|
| 0sdom.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| 0sdom | ⊢ (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0sdom.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | 0sdomg 9030 | . 2 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2113 ≠ wne 2929 Vcvv 3437 ∅c0 4282 class class class wbr 5095 ≺ csdm 8878 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-en 8880 df-dom 8881 df-sdom 8882 |
| This theorem is referenced by: 1sdom2 9143 sdom1 9145 marypha1lem 9328 konigthlem 10470 pwcfsdom 10485 cfpwsdom 10486 rankcf 10679 r1tskina 10684 1stcfb 23380 snct 32719 sigapildsys 34247 modelaxreplem1 45135 |
| Copyright terms: Public domain | W3C validator |