MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0sdom Structured version   Visualization version   GIF version

Theorem 0sdom 9032
Description: A set strictly dominates the empty set iff it is not empty. (Contributed by NM, 29-Jul-2004.)
Hypothesis
Ref Expression
0sdom.1 𝐴 ∈ V
Assertion
Ref Expression
0sdom (∅ ≺ 𝐴𝐴 ≠ ∅)

Proof of Theorem 0sdom
StepHypRef Expression
1 0sdom.1 . 2 𝐴 ∈ V
2 0sdomg 9030 . 2 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
31, 2ax-mp 5 1 (∅ ≺ 𝐴𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2113  wne 2929  Vcvv 3437  c0 4282   class class class wbr 5095  csdm 8878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2537  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-en 8880  df-dom 8881  df-sdom 8882
This theorem is referenced by:  1sdom2  9143  sdom1  9145  marypha1lem  9328  konigthlem  10470  pwcfsdom  10485  cfpwsdom  10486  rankcf  10679  r1tskina  10684  1stcfb  23380  snct  32719  sigapildsys  34247  modelaxreplem1  45135
  Copyright terms: Public domain W3C validator