MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0sdom Structured version   Visualization version   GIF version

Theorem 0sdom 9072
Description: A set strictly dominates the empty set iff it is not empty. (Contributed by NM, 29-Jul-2004.)
Hypothesis
Ref Expression
0sdom.1 𝐴 ∈ V
Assertion
Ref Expression
0sdom (∅ ≺ 𝐴𝐴 ≠ ∅)

Proof of Theorem 0sdom
StepHypRef Expression
1 0sdom.1 . 2 𝐴 ∈ V
2 0sdomg 9070 . 2 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
31, 2ax-mp 5 1 (∅ ≺ 𝐴𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  wne 2925  Vcvv 3447  c0 4296   class class class wbr 5107  csdm 8917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-en 8919  df-dom 8920  df-sdom 8921
This theorem is referenced by:  1sdom2  9187  sdom1  9189  sdom1OLD  9190  marypha1lem  9384  konigthlem  10521  pwcfsdom  10536  cfpwsdom  10537  rankcf  10730  r1tskina  10735  1stcfb  23332  snct  32637  sigapildsys  34152  modelaxreplem1  44968
  Copyright terms: Public domain W3C validator