MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domunsn Structured version   Visualization version   GIF version

Theorem domunsn 8796
Description: Dominance over a set with one element added. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
domunsn (𝐴𝐵 → (𝐴 ∪ {𝐶}) ≼ 𝐵)

Proof of Theorem domunsn
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sdom0 8778 . . . . 5 ¬ 𝐴 ≺ ∅
2 breq2 5057 . . . . 5 (𝐵 = ∅ → (𝐴𝐵𝐴 ≺ ∅))
31, 2mtbiri 330 . . . 4 (𝐵 = ∅ → ¬ 𝐴𝐵)
43con2i 141 . . 3 (𝐴𝐵 → ¬ 𝐵 = ∅)
5 neq0 4260 . . 3 𝐵 = ∅ ↔ ∃𝑧 𝑧𝐵)
64, 5sylib 221 . 2 (𝐴𝐵 → ∃𝑧 𝑧𝐵)
7 domdifsn 8728 . . . . 5 (𝐴𝐵𝐴 ≼ (𝐵 ∖ {𝑧}))
87adantr 484 . . . 4 ((𝐴𝐵𝑧𝐵) → 𝐴 ≼ (𝐵 ∖ {𝑧}))
9 en2sn 8718 . . . . . . 7 ((𝐶 ∈ V ∧ 𝑧 ∈ V) → {𝐶} ≈ {𝑧})
109elvd 3415 . . . . . 6 (𝐶 ∈ V → {𝐶} ≈ {𝑧})
11 endom 8655 . . . . . 6 ({𝐶} ≈ {𝑧} → {𝐶} ≼ {𝑧})
1210, 11syl 17 . . . . 5 (𝐶 ∈ V → {𝐶} ≼ {𝑧})
13 snprc 4633 . . . . . . 7 𝐶 ∈ V ↔ {𝐶} = ∅)
1413biimpi 219 . . . . . 6 𝐶 ∈ V → {𝐶} = ∅)
15 snex 5324 . . . . . . 7 {𝑧} ∈ V
16150dom 8776 . . . . . 6 ∅ ≼ {𝑧}
1714, 16eqbrtrdi 5092 . . . . 5 𝐶 ∈ V → {𝐶} ≼ {𝑧})
1812, 17pm2.61i 185 . . . 4 {𝐶} ≼ {𝑧}
19 disjdifr 4387 . . . . 5 ((𝐵 ∖ {𝑧}) ∩ {𝑧}) = ∅
20 undom 8733 . . . . 5 (((𝐴 ≼ (𝐵 ∖ {𝑧}) ∧ {𝐶} ≼ {𝑧}) ∧ ((𝐵 ∖ {𝑧}) ∩ {𝑧}) = ∅) → (𝐴 ∪ {𝐶}) ≼ ((𝐵 ∖ {𝑧}) ∪ {𝑧}))
2119, 20mpan2 691 . . . 4 ((𝐴 ≼ (𝐵 ∖ {𝑧}) ∧ {𝐶} ≼ {𝑧}) → (𝐴 ∪ {𝐶}) ≼ ((𝐵 ∖ {𝑧}) ∪ {𝑧}))
228, 18, 21sylancl 589 . . 3 ((𝐴𝐵𝑧𝐵) → (𝐴 ∪ {𝐶}) ≼ ((𝐵 ∖ {𝑧}) ∪ {𝑧}))
23 uncom 4067 . . . 4 ((𝐵 ∖ {𝑧}) ∪ {𝑧}) = ({𝑧} ∪ (𝐵 ∖ {𝑧}))
24 simpr 488 . . . . . 6 ((𝐴𝐵𝑧𝐵) → 𝑧𝐵)
2524snssd 4722 . . . . 5 ((𝐴𝐵𝑧𝐵) → {𝑧} ⊆ 𝐵)
26 undif 4396 . . . . 5 ({𝑧} ⊆ 𝐵 ↔ ({𝑧} ∪ (𝐵 ∖ {𝑧})) = 𝐵)
2725, 26sylib 221 . . . 4 ((𝐴𝐵𝑧𝐵) → ({𝑧} ∪ (𝐵 ∖ {𝑧})) = 𝐵)
2823, 27eqtrid 2789 . . 3 ((𝐴𝐵𝑧𝐵) → ((𝐵 ∖ {𝑧}) ∪ {𝑧}) = 𝐵)
2922, 28breqtrd 5079 . 2 ((𝐴𝐵𝑧𝐵) → (𝐴 ∪ {𝐶}) ≼ 𝐵)
306, 29exlimddv 1943 1 (𝐴𝐵 → (𝐴 ∪ {𝐶}) ≼ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wex 1787  wcel 2110  Vcvv 3408  cdif 3863  cun 3864  cin 3865  wss 3866  c0 4237  {csn 4541   class class class wbr 5053  cen 8623  cdom 8624  csdm 8625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629
This theorem is referenced by:  canthp1lem1  10266
  Copyright terms: Public domain W3C validator