MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domunsn Structured version   Visualization version   GIF version

Theorem domunsn 9035
Description: Dominance over a set with one element added. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
domunsn (𝐴𝐵 → (𝐴 ∪ {𝐶}) ≼ 𝐵)

Proof of Theorem domunsn
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sdom0 9017 . . . . 5 ¬ 𝐴 ≺ ∅
2 breq2 5090 . . . . 5 (𝐵 = ∅ → (𝐴𝐵𝐴 ≺ ∅))
31, 2mtbiri 327 . . . 4 (𝐵 = ∅ → ¬ 𝐴𝐵)
43con2i 139 . . 3 (𝐴𝐵 → ¬ 𝐵 = ∅)
5 neq0 4297 . . 3 𝐵 = ∅ ↔ ∃𝑧 𝑧𝐵)
64, 5sylib 218 . 2 (𝐴𝐵 → ∃𝑧 𝑧𝐵)
7 domdifsn 8968 . . . . 5 (𝐴𝐵𝐴 ≼ (𝐵 ∖ {𝑧}))
87adantr 480 . . . 4 ((𝐴𝐵𝑧𝐵) → 𝐴 ≼ (𝐵 ∖ {𝑧}))
9 en2sn 8958 . . . . . . 7 ((𝐶 ∈ V ∧ 𝑧 ∈ V) → {𝐶} ≈ {𝑧})
109elvd 3442 . . . . . 6 (𝐶 ∈ V → {𝐶} ≈ {𝑧})
11 endom 8896 . . . . . 6 ({𝐶} ≈ {𝑧} → {𝐶} ≼ {𝑧})
1210, 11syl 17 . . . . 5 (𝐶 ∈ V → {𝐶} ≼ {𝑧})
13 snprc 4665 . . . . . . 7 𝐶 ∈ V ↔ {𝐶} = ∅)
1413biimpi 216 . . . . . 6 𝐶 ∈ V → {𝐶} = ∅)
15 vsnex 5367 . . . . . . 7 {𝑧} ∈ V
16150dom 9015 . . . . . 6 ∅ ≼ {𝑧}
1714, 16eqbrtrdi 5125 . . . . 5 𝐶 ∈ V → {𝐶} ≼ {𝑧})
1812, 17pm2.61i 182 . . . 4 {𝐶} ≼ {𝑧}
19 disjdifr 4418 . . . . 5 ((𝐵 ∖ {𝑧}) ∩ {𝑧}) = ∅
20 undom 8973 . . . . 5 (((𝐴 ≼ (𝐵 ∖ {𝑧}) ∧ {𝐶} ≼ {𝑧}) ∧ ((𝐵 ∖ {𝑧}) ∩ {𝑧}) = ∅) → (𝐴 ∪ {𝐶}) ≼ ((𝐵 ∖ {𝑧}) ∪ {𝑧}))
2119, 20mpan2 691 . . . 4 ((𝐴 ≼ (𝐵 ∖ {𝑧}) ∧ {𝐶} ≼ {𝑧}) → (𝐴 ∪ {𝐶}) ≼ ((𝐵 ∖ {𝑧}) ∪ {𝑧}))
228, 18, 21sylancl 586 . . 3 ((𝐴𝐵𝑧𝐵) → (𝐴 ∪ {𝐶}) ≼ ((𝐵 ∖ {𝑧}) ∪ {𝑧}))
23 uncom 4103 . . . 4 ((𝐵 ∖ {𝑧}) ∪ {𝑧}) = ({𝑧} ∪ (𝐵 ∖ {𝑧}))
24 simpr 484 . . . . . 6 ((𝐴𝐵𝑧𝐵) → 𝑧𝐵)
2524snssd 4756 . . . . 5 ((𝐴𝐵𝑧𝐵) → {𝑧} ⊆ 𝐵)
26 undif 4427 . . . . 5 ({𝑧} ⊆ 𝐵 ↔ ({𝑧} ∪ (𝐵 ∖ {𝑧})) = 𝐵)
2725, 26sylib 218 . . . 4 ((𝐴𝐵𝑧𝐵) → ({𝑧} ∪ (𝐵 ∖ {𝑧})) = 𝐵)
2823, 27eqtrid 2778 . . 3 ((𝐴𝐵𝑧𝐵) → ((𝐵 ∖ {𝑧}) ∪ {𝑧}) = 𝐵)
2922, 28breqtrd 5112 . 2 ((𝐴𝐵𝑧𝐵) → (𝐴 ∪ {𝐶}) ≼ 𝐵)
306, 29exlimddv 1936 1 (𝐴𝐵 → (𝐴 ∪ {𝐶}) ≼ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2111  Vcvv 3436  cdif 3894  cun 3895  cin 3896  wss 3897  c0 4278  {csn 4571   class class class wbr 5086  cen 8861  cdom 8862  csdm 8863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-en 8865  df-dom 8866  df-sdom 8867
This theorem is referenced by:  canthp1lem1  10538
  Copyright terms: Public domain W3C validator