MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domunsn Structured version   Visualization version   GIF version

Theorem domunsn 8914
Description: Dominance over a set with one element added. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
domunsn (𝐴𝐵 → (𝐴 ∪ {𝐶}) ≼ 𝐵)

Proof of Theorem domunsn
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sdom0 8895 . . . . 5 ¬ 𝐴 ≺ ∅
2 breq2 5078 . . . . 5 (𝐵 = ∅ → (𝐴𝐵𝐴 ≺ ∅))
31, 2mtbiri 327 . . . 4 (𝐵 = ∅ → ¬ 𝐴𝐵)
43con2i 139 . . 3 (𝐴𝐵 → ¬ 𝐵 = ∅)
5 neq0 4279 . . 3 𝐵 = ∅ ↔ ∃𝑧 𝑧𝐵)
64, 5sylib 217 . 2 (𝐴𝐵 → ∃𝑧 𝑧𝐵)
7 domdifsn 8841 . . . . 5 (𝐴𝐵𝐴 ≼ (𝐵 ∖ {𝑧}))
87adantr 481 . . . 4 ((𝐴𝐵𝑧𝐵) → 𝐴 ≼ (𝐵 ∖ {𝑧}))
9 en2sn 8831 . . . . . . 7 ((𝐶 ∈ V ∧ 𝑧 ∈ V) → {𝐶} ≈ {𝑧})
109elvd 3439 . . . . . 6 (𝐶 ∈ V → {𝐶} ≈ {𝑧})
11 endom 8767 . . . . . 6 ({𝐶} ≈ {𝑧} → {𝐶} ≼ {𝑧})
1210, 11syl 17 . . . . 5 (𝐶 ∈ V → {𝐶} ≼ {𝑧})
13 snprc 4653 . . . . . . 7 𝐶 ∈ V ↔ {𝐶} = ∅)
1413biimpi 215 . . . . . 6 𝐶 ∈ V → {𝐶} = ∅)
15 snex 5354 . . . . . . 7 {𝑧} ∈ V
16150dom 8893 . . . . . 6 ∅ ≼ {𝑧}
1714, 16eqbrtrdi 5113 . . . . 5 𝐶 ∈ V → {𝐶} ≼ {𝑧})
1812, 17pm2.61i 182 . . . 4 {𝐶} ≼ {𝑧}
19 disjdifr 4406 . . . . 5 ((𝐵 ∖ {𝑧}) ∩ {𝑧}) = ∅
20 undom 8846 . . . . 5 (((𝐴 ≼ (𝐵 ∖ {𝑧}) ∧ {𝐶} ≼ {𝑧}) ∧ ((𝐵 ∖ {𝑧}) ∩ {𝑧}) = ∅) → (𝐴 ∪ {𝐶}) ≼ ((𝐵 ∖ {𝑧}) ∪ {𝑧}))
2119, 20mpan2 688 . . . 4 ((𝐴 ≼ (𝐵 ∖ {𝑧}) ∧ {𝐶} ≼ {𝑧}) → (𝐴 ∪ {𝐶}) ≼ ((𝐵 ∖ {𝑧}) ∪ {𝑧}))
228, 18, 21sylancl 586 . . 3 ((𝐴𝐵𝑧𝐵) → (𝐴 ∪ {𝐶}) ≼ ((𝐵 ∖ {𝑧}) ∪ {𝑧}))
23 uncom 4087 . . . 4 ((𝐵 ∖ {𝑧}) ∪ {𝑧}) = ({𝑧} ∪ (𝐵 ∖ {𝑧}))
24 simpr 485 . . . . . 6 ((𝐴𝐵𝑧𝐵) → 𝑧𝐵)
2524snssd 4742 . . . . 5 ((𝐴𝐵𝑧𝐵) → {𝑧} ⊆ 𝐵)
26 undif 4415 . . . . 5 ({𝑧} ⊆ 𝐵 ↔ ({𝑧} ∪ (𝐵 ∖ {𝑧})) = 𝐵)
2725, 26sylib 217 . . . 4 ((𝐴𝐵𝑧𝐵) → ({𝑧} ∪ (𝐵 ∖ {𝑧})) = 𝐵)
2823, 27eqtrid 2790 . . 3 ((𝐴𝐵𝑧𝐵) → ((𝐵 ∖ {𝑧}) ∪ {𝑧}) = 𝐵)
2922, 28breqtrd 5100 . 2 ((𝐴𝐵𝑧𝐵) → (𝐴 ∪ {𝐶}) ≼ 𝐵)
306, 29exlimddv 1938 1 (𝐴𝐵 → (𝐴 ∪ {𝐶}) ≼ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wex 1782  wcel 2106  Vcvv 3432  cdif 3884  cun 3885  cin 3886  wss 3887  c0 4256  {csn 4561   class class class wbr 5074  cen 8730  cdom 8731  csdm 8732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-en 8734  df-dom 8735  df-sdom 8736
This theorem is referenced by:  canthp1lem1  10408
  Copyright terms: Public domain W3C validator