![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mapdom1 | Structured version Visualization version GIF version |
Description: Order-preserving property of set exponentiation. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 9-Mar-2013.) |
Ref | Expression |
---|---|
mapdom1 | ⊢ (𝐴 ≼ 𝐵 → (𝐴 ↑m 𝐶) ≼ (𝐵 ↑m 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 9009 | . . . . . . 7 ⊢ Rel ≼ | |
2 | 1 | brrelex2i 5757 | . . . . . 6 ⊢ (𝐴 ≼ 𝐵 → 𝐵 ∈ V) |
3 | domeng 9022 | . . . . . 6 ⊢ (𝐵 ∈ V → (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵))) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝐴 ≼ 𝐵 → (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵))) |
5 | 4 | ibi 267 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) |
6 | 5 | adantr 480 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V) → ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) |
7 | simpl 482 | . . . . 5 ⊢ ((𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵) → 𝐴 ≈ 𝑥) | |
8 | enrefg 9044 | . . . . . 6 ⊢ (𝐶 ∈ V → 𝐶 ≈ 𝐶) | |
9 | 8 | adantl 481 | . . . . 5 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V) → 𝐶 ≈ 𝐶) |
10 | mapen 9207 | . . . . 5 ⊢ ((𝐴 ≈ 𝑥 ∧ 𝐶 ≈ 𝐶) → (𝐴 ↑m 𝐶) ≈ (𝑥 ↑m 𝐶)) | |
11 | 7, 9, 10 | syl2anr 596 | . . . 4 ⊢ (((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V) ∧ (𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) → (𝐴 ↑m 𝐶) ≈ (𝑥 ↑m 𝐶)) |
12 | ovex 7481 | . . . . 5 ⊢ (𝐵 ↑m 𝐶) ∈ V | |
13 | 2 | ad2antrr 725 | . . . . . 6 ⊢ (((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V) ∧ (𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) → 𝐵 ∈ V) |
14 | simprr 772 | . . . . . 6 ⊢ (((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V) ∧ (𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) → 𝑥 ⊆ 𝐵) | |
15 | mapss 8947 | . . . . . 6 ⊢ ((𝐵 ∈ V ∧ 𝑥 ⊆ 𝐵) → (𝑥 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) | |
16 | 13, 14, 15 | syl2anc 583 | . . . . 5 ⊢ (((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V) ∧ (𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) → (𝑥 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) |
17 | ssdomg 9060 | . . . . 5 ⊢ ((𝐵 ↑m 𝐶) ∈ V → ((𝑥 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶) → (𝑥 ↑m 𝐶) ≼ (𝐵 ↑m 𝐶))) | |
18 | 12, 16, 17 | mpsyl 68 | . . . 4 ⊢ (((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V) ∧ (𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) → (𝑥 ↑m 𝐶) ≼ (𝐵 ↑m 𝐶)) |
19 | endomtr 9072 | . . . 4 ⊢ (((𝐴 ↑m 𝐶) ≈ (𝑥 ↑m 𝐶) ∧ (𝑥 ↑m 𝐶) ≼ (𝐵 ↑m 𝐶)) → (𝐴 ↑m 𝐶) ≼ (𝐵 ↑m 𝐶)) | |
20 | 11, 18, 19 | syl2anc 583 | . . 3 ⊢ (((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V) ∧ (𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) → (𝐴 ↑m 𝐶) ≼ (𝐵 ↑m 𝐶)) |
21 | 6, 20 | exlimddv 1934 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V) → (𝐴 ↑m 𝐶) ≼ (𝐵 ↑m 𝐶)) |
22 | elmapex 8906 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ↑m 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V)) | |
23 | 22 | simprd 495 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ↑m 𝐶) → 𝐶 ∈ V) |
24 | 23 | con3i 154 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → ¬ 𝑥 ∈ (𝐴 ↑m 𝐶)) |
25 | 24 | eq0rdv 4430 | . . . 4 ⊢ (¬ 𝐶 ∈ V → (𝐴 ↑m 𝐶) = ∅) |
26 | 25 | adantl 481 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ ¬ 𝐶 ∈ V) → (𝐴 ↑m 𝐶) = ∅) |
27 | 12 | 0dom 9172 | . . 3 ⊢ ∅ ≼ (𝐵 ↑m 𝐶) |
28 | 26, 27 | eqbrtrdi 5205 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ ¬ 𝐶 ∈ V) → (𝐴 ↑m 𝐶) ≼ (𝐵 ↑m 𝐶)) |
29 | 21, 28 | pm2.61dan 812 | 1 ⊢ (𝐴 ≼ 𝐵 → (𝐴 ↑m 𝐶) ≼ (𝐵 ↑m 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 class class class wbr 5166 (class class class)co 7448 ↑m cmap 8884 ≈ cen 9000 ≼ cdom 9001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 df-en 9004 df-dom 9005 |
This theorem is referenced by: mappwen 10181 pwcfsdom 10652 cfpwsdom 10653 rpnnen 16275 rexpen 16276 hauspwdom 23530 |
Copyright terms: Public domain | W3C validator |