MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapdom1 Structured version   Visualization version   GIF version

Theorem mapdom1 9208
Description: Order-preserving property of set exponentiation. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 9-Mar-2013.)
Assertion
Ref Expression
mapdom1 (𝐴𝐵 → (𝐴m 𝐶) ≼ (𝐵m 𝐶))

Proof of Theorem mapdom1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 reldom 9009 . . . . . . 7 Rel ≼
21brrelex2i 5757 . . . . . 6 (𝐴𝐵𝐵 ∈ V)
3 domeng 9022 . . . . . 6 (𝐵 ∈ V → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
42, 3syl 17 . . . . 5 (𝐴𝐵 → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
54ibi 267 . . . 4 (𝐴𝐵 → ∃𝑥(𝐴𝑥𝑥𝐵))
65adantr 480 . . 3 ((𝐴𝐵𝐶 ∈ V) → ∃𝑥(𝐴𝑥𝑥𝐵))
7 simpl 482 . . . . 5 ((𝐴𝑥𝑥𝐵) → 𝐴𝑥)
8 enrefg 9044 . . . . . 6 (𝐶 ∈ V → 𝐶𝐶)
98adantl 481 . . . . 5 ((𝐴𝐵𝐶 ∈ V) → 𝐶𝐶)
10 mapen 9207 . . . . 5 ((𝐴𝑥𝐶𝐶) → (𝐴m 𝐶) ≈ (𝑥m 𝐶))
117, 9, 10syl2anr 596 . . . 4 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐴𝑥𝑥𝐵)) → (𝐴m 𝐶) ≈ (𝑥m 𝐶))
12 ovex 7481 . . . . 5 (𝐵m 𝐶) ∈ V
132ad2antrr 725 . . . . . 6 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐴𝑥𝑥𝐵)) → 𝐵 ∈ V)
14 simprr 772 . . . . . 6 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐴𝑥𝑥𝐵)) → 𝑥𝐵)
15 mapss 8947 . . . . . 6 ((𝐵 ∈ V ∧ 𝑥𝐵) → (𝑥m 𝐶) ⊆ (𝐵m 𝐶))
1613, 14, 15syl2anc 583 . . . . 5 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐴𝑥𝑥𝐵)) → (𝑥m 𝐶) ⊆ (𝐵m 𝐶))
17 ssdomg 9060 . . . . 5 ((𝐵m 𝐶) ∈ V → ((𝑥m 𝐶) ⊆ (𝐵m 𝐶) → (𝑥m 𝐶) ≼ (𝐵m 𝐶)))
1812, 16, 17mpsyl 68 . . . 4 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐴𝑥𝑥𝐵)) → (𝑥m 𝐶) ≼ (𝐵m 𝐶))
19 endomtr 9072 . . . 4 (((𝐴m 𝐶) ≈ (𝑥m 𝐶) ∧ (𝑥m 𝐶) ≼ (𝐵m 𝐶)) → (𝐴m 𝐶) ≼ (𝐵m 𝐶))
2011, 18, 19syl2anc 583 . . 3 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐴𝑥𝑥𝐵)) → (𝐴m 𝐶) ≼ (𝐵m 𝐶))
216, 20exlimddv 1934 . 2 ((𝐴𝐵𝐶 ∈ V) → (𝐴m 𝐶) ≼ (𝐵m 𝐶))
22 elmapex 8906 . . . . . . 7 (𝑥 ∈ (𝐴m 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V))
2322simprd 495 . . . . . 6 (𝑥 ∈ (𝐴m 𝐶) → 𝐶 ∈ V)
2423con3i 154 . . . . 5 𝐶 ∈ V → ¬ 𝑥 ∈ (𝐴m 𝐶))
2524eq0rdv 4430 . . . 4 𝐶 ∈ V → (𝐴m 𝐶) = ∅)
2625adantl 481 . . 3 ((𝐴𝐵 ∧ ¬ 𝐶 ∈ V) → (𝐴m 𝐶) = ∅)
27120dom 9172 . . 3 ∅ ≼ (𝐵m 𝐶)
2826, 27eqbrtrdi 5205 . 2 ((𝐴𝐵 ∧ ¬ 𝐶 ∈ V) → (𝐴m 𝐶) ≼ (𝐵m 𝐶))
2921, 28pm2.61dan 812 1 (𝐴𝐵 → (𝐴m 𝐶) ≼ (𝐵m 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  Vcvv 3488  wss 3976  c0 4352   class class class wbr 5166  (class class class)co 7448  m cmap 8884  cen 9000  cdom 9001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-en 9004  df-dom 9005
This theorem is referenced by:  mappwen  10181  pwcfsdom  10652  cfpwsdom  10653  rpnnen  16275  rexpen  16276  hauspwdom  23530
  Copyright terms: Public domain W3C validator