MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapdom1 Structured version   Visualization version   GIF version

Theorem mapdom1 9093
Description: Order-preserving property of set exponentiation. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 9-Mar-2013.)
Assertion
Ref Expression
mapdom1 (𝐴𝐵 → (𝐴m 𝐶) ≼ (𝐵m 𝐶))

Proof of Theorem mapdom1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 reldom 8896 . . . . . . 7 Rel ≼
21brrelex2i 5694 . . . . . 6 (𝐴𝐵𝐵 ∈ V)
3 domeng 8909 . . . . . 6 (𝐵 ∈ V → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
42, 3syl 17 . . . . 5 (𝐴𝐵 → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
54ibi 266 . . . 4 (𝐴𝐵 → ∃𝑥(𝐴𝑥𝑥𝐵))
65adantr 481 . . 3 ((𝐴𝐵𝐶 ∈ V) → ∃𝑥(𝐴𝑥𝑥𝐵))
7 simpl 483 . . . . 5 ((𝐴𝑥𝑥𝐵) → 𝐴𝑥)
8 enrefg 8931 . . . . . 6 (𝐶 ∈ V → 𝐶𝐶)
98adantl 482 . . . . 5 ((𝐴𝐵𝐶 ∈ V) → 𝐶𝐶)
10 mapen 9092 . . . . 5 ((𝐴𝑥𝐶𝐶) → (𝐴m 𝐶) ≈ (𝑥m 𝐶))
117, 9, 10syl2anr 597 . . . 4 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐴𝑥𝑥𝐵)) → (𝐴m 𝐶) ≈ (𝑥m 𝐶))
12 ovex 7395 . . . . 5 (𝐵m 𝐶) ∈ V
132ad2antrr 724 . . . . . 6 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐴𝑥𝑥𝐵)) → 𝐵 ∈ V)
14 simprr 771 . . . . . 6 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐴𝑥𝑥𝐵)) → 𝑥𝐵)
15 mapss 8834 . . . . . 6 ((𝐵 ∈ V ∧ 𝑥𝐵) → (𝑥m 𝐶) ⊆ (𝐵m 𝐶))
1613, 14, 15syl2anc 584 . . . . 5 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐴𝑥𝑥𝐵)) → (𝑥m 𝐶) ⊆ (𝐵m 𝐶))
17 ssdomg 8947 . . . . 5 ((𝐵m 𝐶) ∈ V → ((𝑥m 𝐶) ⊆ (𝐵m 𝐶) → (𝑥m 𝐶) ≼ (𝐵m 𝐶)))
1812, 16, 17mpsyl 68 . . . 4 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐴𝑥𝑥𝐵)) → (𝑥m 𝐶) ≼ (𝐵m 𝐶))
19 endomtr 8959 . . . 4 (((𝐴m 𝐶) ≈ (𝑥m 𝐶) ∧ (𝑥m 𝐶) ≼ (𝐵m 𝐶)) → (𝐴m 𝐶) ≼ (𝐵m 𝐶))
2011, 18, 19syl2anc 584 . . 3 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐴𝑥𝑥𝐵)) → (𝐴m 𝐶) ≼ (𝐵m 𝐶))
216, 20exlimddv 1938 . 2 ((𝐴𝐵𝐶 ∈ V) → (𝐴m 𝐶) ≼ (𝐵m 𝐶))
22 elmapex 8793 . . . . . . 7 (𝑥 ∈ (𝐴m 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V))
2322simprd 496 . . . . . 6 (𝑥 ∈ (𝐴m 𝐶) → 𝐶 ∈ V)
2423con3i 154 . . . . 5 𝐶 ∈ V → ¬ 𝑥 ∈ (𝐴m 𝐶))
2524eq0rdv 4369 . . . 4 𝐶 ∈ V → (𝐴m 𝐶) = ∅)
2625adantl 482 . . 3 ((𝐴𝐵 ∧ ¬ 𝐶 ∈ V) → (𝐴m 𝐶) = ∅)
27120dom 9057 . . 3 ∅ ≼ (𝐵m 𝐶)
2826, 27eqbrtrdi 5149 . 2 ((𝐴𝐵 ∧ ¬ 𝐶 ∈ V) → (𝐴m 𝐶) ≼ (𝐵m 𝐶))
2921, 28pm2.61dan 811 1 (𝐴𝐵 → (𝐴m 𝐶) ≼ (𝐵m 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  Vcvv 3446  wss 3913  c0 4287   class class class wbr 5110  (class class class)co 7362  m cmap 8772  cen 8887  cdom 8888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-ov 7365  df-oprab 7366  df-mpo 7367  df-1st 7926  df-2nd 7927  df-map 8774  df-en 8891  df-dom 8892
This theorem is referenced by:  mappwen  10057  pwcfsdom  10528  cfpwsdom  10529  rpnnen  16120  rexpen  16121  hauspwdom  22889
  Copyright terms: Public domain W3C validator