MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapdom1 Structured version   Visualization version   GIF version

Theorem mapdom1 8878
Description: Order-preserving property of set exponentiation. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 9-Mar-2013.)
Assertion
Ref Expression
mapdom1 (𝐴𝐵 → (𝐴m 𝐶) ≼ (𝐵m 𝐶))

Proof of Theorem mapdom1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 reldom 8697 . . . . . . 7 Rel ≼
21brrelex2i 5635 . . . . . 6 (𝐴𝐵𝐵 ∈ V)
3 domeng 8707 . . . . . 6 (𝐵 ∈ V → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
42, 3syl 17 . . . . 5 (𝐴𝐵 → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
54ibi 266 . . . 4 (𝐴𝐵 → ∃𝑥(𝐴𝑥𝑥𝐵))
65adantr 480 . . 3 ((𝐴𝐵𝐶 ∈ V) → ∃𝑥(𝐴𝑥𝑥𝐵))
7 simpl 482 . . . . 5 ((𝐴𝑥𝑥𝐵) → 𝐴𝑥)
8 enrefg 8727 . . . . . 6 (𝐶 ∈ V → 𝐶𝐶)
98adantl 481 . . . . 5 ((𝐴𝐵𝐶 ∈ V) → 𝐶𝐶)
10 mapen 8877 . . . . 5 ((𝐴𝑥𝐶𝐶) → (𝐴m 𝐶) ≈ (𝑥m 𝐶))
117, 9, 10syl2anr 596 . . . 4 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐴𝑥𝑥𝐵)) → (𝐴m 𝐶) ≈ (𝑥m 𝐶))
12 ovex 7288 . . . . 5 (𝐵m 𝐶) ∈ V
132ad2antrr 722 . . . . . 6 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐴𝑥𝑥𝐵)) → 𝐵 ∈ V)
14 simprr 769 . . . . . 6 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐴𝑥𝑥𝐵)) → 𝑥𝐵)
15 mapss 8635 . . . . . 6 ((𝐵 ∈ V ∧ 𝑥𝐵) → (𝑥m 𝐶) ⊆ (𝐵m 𝐶))
1613, 14, 15syl2anc 583 . . . . 5 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐴𝑥𝑥𝐵)) → (𝑥m 𝐶) ⊆ (𝐵m 𝐶))
17 ssdomg 8741 . . . . 5 ((𝐵m 𝐶) ∈ V → ((𝑥m 𝐶) ⊆ (𝐵m 𝐶) → (𝑥m 𝐶) ≼ (𝐵m 𝐶)))
1812, 16, 17mpsyl 68 . . . 4 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐴𝑥𝑥𝐵)) → (𝑥m 𝐶) ≼ (𝐵m 𝐶))
19 endomtr 8753 . . . 4 (((𝐴m 𝐶) ≈ (𝑥m 𝐶) ∧ (𝑥m 𝐶) ≼ (𝐵m 𝐶)) → (𝐴m 𝐶) ≼ (𝐵m 𝐶))
2011, 18, 19syl2anc 583 . . 3 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐴𝑥𝑥𝐵)) → (𝐴m 𝐶) ≼ (𝐵m 𝐶))
216, 20exlimddv 1939 . 2 ((𝐴𝐵𝐶 ∈ V) → (𝐴m 𝐶) ≼ (𝐵m 𝐶))
22 elmapex 8594 . . . . . . 7 (𝑥 ∈ (𝐴m 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V))
2322simprd 495 . . . . . 6 (𝑥 ∈ (𝐴m 𝐶) → 𝐶 ∈ V)
2423con3i 154 . . . . 5 𝐶 ∈ V → ¬ 𝑥 ∈ (𝐴m 𝐶))
2524eq0rdv 4335 . . . 4 𝐶 ∈ V → (𝐴m 𝐶) = ∅)
2625adantl 481 . . 3 ((𝐴𝐵 ∧ ¬ 𝐶 ∈ V) → (𝐴m 𝐶) = ∅)
27120dom 8843 . . 3 ∅ ≼ (𝐵m 𝐶)
2826, 27eqbrtrdi 5109 . 2 ((𝐴𝐵 ∧ ¬ 𝐶 ∈ V) → (𝐴m 𝐶) ≼ (𝐵m 𝐶))
2921, 28pm2.61dan 809 1 (𝐴𝐵 → (𝐴m 𝐶) ≼ (𝐵m 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  Vcvv 3422  wss 3883  c0 4253   class class class wbr 5070  (class class class)co 7255  m cmap 8573  cen 8688  cdom 8689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575  df-en 8692  df-dom 8693
This theorem is referenced by:  mappwen  9799  pwcfsdom  10270  cfpwsdom  10271  rpnnen  15864  rexpen  15865  hauspwdom  22560
  Copyright terms: Public domain W3C validator