MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapdom1 Structured version   Visualization version   GIF version

Theorem mapdom1 9137
Description: Order-preserving property of set exponentiation. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 9-Mar-2013.)
Assertion
Ref Expression
mapdom1 (𝐴𝐵 → (𝐴m 𝐶) ≼ (𝐵m 𝐶))

Proof of Theorem mapdom1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 reldom 8940 . . . . . . 7 Rel ≼
21brrelex2i 5723 . . . . . 6 (𝐴𝐵𝐵 ∈ V)
3 domeng 8953 . . . . . 6 (𝐵 ∈ V → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
42, 3syl 17 . . . . 5 (𝐴𝐵 → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
54ibi 267 . . . 4 (𝐴𝐵 → ∃𝑥(𝐴𝑥𝑥𝐵))
65adantr 480 . . 3 ((𝐴𝐵𝐶 ∈ V) → ∃𝑥(𝐴𝑥𝑥𝐵))
7 simpl 482 . . . . 5 ((𝐴𝑥𝑥𝐵) → 𝐴𝑥)
8 enrefg 8975 . . . . . 6 (𝐶 ∈ V → 𝐶𝐶)
98adantl 481 . . . . 5 ((𝐴𝐵𝐶 ∈ V) → 𝐶𝐶)
10 mapen 9136 . . . . 5 ((𝐴𝑥𝐶𝐶) → (𝐴m 𝐶) ≈ (𝑥m 𝐶))
117, 9, 10syl2anr 596 . . . 4 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐴𝑥𝑥𝐵)) → (𝐴m 𝐶) ≈ (𝑥m 𝐶))
12 ovex 7434 . . . . 5 (𝐵m 𝐶) ∈ V
132ad2antrr 723 . . . . . 6 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐴𝑥𝑥𝐵)) → 𝐵 ∈ V)
14 simprr 770 . . . . . 6 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐴𝑥𝑥𝐵)) → 𝑥𝐵)
15 mapss 8878 . . . . . 6 ((𝐵 ∈ V ∧ 𝑥𝐵) → (𝑥m 𝐶) ⊆ (𝐵m 𝐶))
1613, 14, 15syl2anc 583 . . . . 5 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐴𝑥𝑥𝐵)) → (𝑥m 𝐶) ⊆ (𝐵m 𝐶))
17 ssdomg 8991 . . . . 5 ((𝐵m 𝐶) ∈ V → ((𝑥m 𝐶) ⊆ (𝐵m 𝐶) → (𝑥m 𝐶) ≼ (𝐵m 𝐶)))
1812, 16, 17mpsyl 68 . . . 4 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐴𝑥𝑥𝐵)) → (𝑥m 𝐶) ≼ (𝐵m 𝐶))
19 endomtr 9003 . . . 4 (((𝐴m 𝐶) ≈ (𝑥m 𝐶) ∧ (𝑥m 𝐶) ≼ (𝐵m 𝐶)) → (𝐴m 𝐶) ≼ (𝐵m 𝐶))
2011, 18, 19syl2anc 583 . . 3 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐴𝑥𝑥𝐵)) → (𝐴m 𝐶) ≼ (𝐵m 𝐶))
216, 20exlimddv 1930 . 2 ((𝐴𝐵𝐶 ∈ V) → (𝐴m 𝐶) ≼ (𝐵m 𝐶))
22 elmapex 8837 . . . . . . 7 (𝑥 ∈ (𝐴m 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V))
2322simprd 495 . . . . . 6 (𝑥 ∈ (𝐴m 𝐶) → 𝐶 ∈ V)
2423con3i 154 . . . . 5 𝐶 ∈ V → ¬ 𝑥 ∈ (𝐴m 𝐶))
2524eq0rdv 4396 . . . 4 𝐶 ∈ V → (𝐴m 𝐶) = ∅)
2625adantl 481 . . 3 ((𝐴𝐵 ∧ ¬ 𝐶 ∈ V) → (𝐴m 𝐶) = ∅)
27120dom 9101 . . 3 ∅ ≼ (𝐵m 𝐶)
2826, 27eqbrtrdi 5177 . 2 ((𝐴𝐵 ∧ ¬ 𝐶 ∈ V) → (𝐴m 𝐶) ≼ (𝐵m 𝐶))
2921, 28pm2.61dan 810 1 (𝐴𝐵 → (𝐴m 𝐶) ≼ (𝐵m 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1533  wex 1773  wcel 2098  Vcvv 3466  wss 3940  c0 4314   class class class wbr 5138  (class class class)co 7401  m cmap 8815  cen 8931  cdom 8932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-map 8817  df-en 8935  df-dom 8936
This theorem is referenced by:  mappwen  10102  pwcfsdom  10573  cfpwsdom  10574  rpnnen  16166  rexpen  16167  hauspwdom  23315
  Copyright terms: Public domain W3C validator