MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapdom1 Structured version   Visualization version   GIF version

Theorem mapdom1 9182
Description: Order-preserving property of set exponentiation. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 9-Mar-2013.)
Assertion
Ref Expression
mapdom1 (𝐴𝐵 → (𝐴m 𝐶) ≼ (𝐵m 𝐶))

Proof of Theorem mapdom1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 reldom 8991 . . . . . . 7 Rel ≼
21brrelex2i 5742 . . . . . 6 (𝐴𝐵𝐵 ∈ V)
3 domeng 9003 . . . . . 6 (𝐵 ∈ V → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
42, 3syl 17 . . . . 5 (𝐴𝐵 → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
54ibi 267 . . . 4 (𝐴𝐵 → ∃𝑥(𝐴𝑥𝑥𝐵))
65adantr 480 . . 3 ((𝐴𝐵𝐶 ∈ V) → ∃𝑥(𝐴𝑥𝑥𝐵))
7 simpl 482 . . . . 5 ((𝐴𝑥𝑥𝐵) → 𝐴𝑥)
8 enrefg 9024 . . . . . 6 (𝐶 ∈ V → 𝐶𝐶)
98adantl 481 . . . . 5 ((𝐴𝐵𝐶 ∈ V) → 𝐶𝐶)
10 mapen 9181 . . . . 5 ((𝐴𝑥𝐶𝐶) → (𝐴m 𝐶) ≈ (𝑥m 𝐶))
117, 9, 10syl2anr 597 . . . 4 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐴𝑥𝑥𝐵)) → (𝐴m 𝐶) ≈ (𝑥m 𝐶))
12 ovex 7464 . . . . 5 (𝐵m 𝐶) ∈ V
132ad2antrr 726 . . . . . 6 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐴𝑥𝑥𝐵)) → 𝐵 ∈ V)
14 simprr 773 . . . . . 6 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐴𝑥𝑥𝐵)) → 𝑥𝐵)
15 mapss 8929 . . . . . 6 ((𝐵 ∈ V ∧ 𝑥𝐵) → (𝑥m 𝐶) ⊆ (𝐵m 𝐶))
1613, 14, 15syl2anc 584 . . . . 5 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐴𝑥𝑥𝐵)) → (𝑥m 𝐶) ⊆ (𝐵m 𝐶))
17 ssdomg 9040 . . . . 5 ((𝐵m 𝐶) ∈ V → ((𝑥m 𝐶) ⊆ (𝐵m 𝐶) → (𝑥m 𝐶) ≼ (𝐵m 𝐶)))
1812, 16, 17mpsyl 68 . . . 4 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐴𝑥𝑥𝐵)) → (𝑥m 𝐶) ≼ (𝐵m 𝐶))
19 endomtr 9052 . . . 4 (((𝐴m 𝐶) ≈ (𝑥m 𝐶) ∧ (𝑥m 𝐶) ≼ (𝐵m 𝐶)) → (𝐴m 𝐶) ≼ (𝐵m 𝐶))
2011, 18, 19syl2anc 584 . . 3 (((𝐴𝐵𝐶 ∈ V) ∧ (𝐴𝑥𝑥𝐵)) → (𝐴m 𝐶) ≼ (𝐵m 𝐶))
216, 20exlimddv 1935 . 2 ((𝐴𝐵𝐶 ∈ V) → (𝐴m 𝐶) ≼ (𝐵m 𝐶))
22 elmapex 8888 . . . . . . 7 (𝑥 ∈ (𝐴m 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V))
2322simprd 495 . . . . . 6 (𝑥 ∈ (𝐴m 𝐶) → 𝐶 ∈ V)
2423con3i 154 . . . . 5 𝐶 ∈ V → ¬ 𝑥 ∈ (𝐴m 𝐶))
2524eq0rdv 4407 . . . 4 𝐶 ∈ V → (𝐴m 𝐶) = ∅)
2625adantl 481 . . 3 ((𝐴𝐵 ∧ ¬ 𝐶 ∈ V) → (𝐴m 𝐶) = ∅)
27120dom 9146 . . 3 ∅ ≼ (𝐵m 𝐶)
2826, 27eqbrtrdi 5182 . 2 ((𝐴𝐵 ∧ ¬ 𝐶 ∈ V) → (𝐴m 𝐶) ≼ (𝐵m 𝐶))
2921, 28pm2.61dan 813 1 (𝐴𝐵 → (𝐴m 𝐶) ≼ (𝐵m 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  Vcvv 3480  wss 3951  c0 4333   class class class wbr 5143  (class class class)co 7431  m cmap 8866  cen 8982  cdom 8983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-map 8868  df-en 8986  df-dom 8987
This theorem is referenced by:  mappwen  10152  pwcfsdom  10623  cfpwsdom  10624  rpnnen  16263  rexpen  16264  hauspwdom  23509
  Copyright terms: Public domain W3C validator