![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mapdom1 | Structured version Visualization version GIF version |
Description: Order-preserving property of set exponentiation. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 9-Mar-2013.) |
Ref | Expression |
---|---|
mapdom1 | ⊢ (𝐴 ≼ 𝐵 → (𝐴 ↑m 𝐶) ≼ (𝐵 ↑m 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 8896 | . . . . . . 7 ⊢ Rel ≼ | |
2 | 1 | brrelex2i 5694 | . . . . . 6 ⊢ (𝐴 ≼ 𝐵 → 𝐵 ∈ V) |
3 | domeng 8909 | . . . . . 6 ⊢ (𝐵 ∈ V → (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵))) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝐴 ≼ 𝐵 → (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵))) |
5 | 4 | ibi 266 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) |
6 | 5 | adantr 481 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V) → ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) |
7 | simpl 483 | . . . . 5 ⊢ ((𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵) → 𝐴 ≈ 𝑥) | |
8 | enrefg 8931 | . . . . . 6 ⊢ (𝐶 ∈ V → 𝐶 ≈ 𝐶) | |
9 | 8 | adantl 482 | . . . . 5 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V) → 𝐶 ≈ 𝐶) |
10 | mapen 9092 | . . . . 5 ⊢ ((𝐴 ≈ 𝑥 ∧ 𝐶 ≈ 𝐶) → (𝐴 ↑m 𝐶) ≈ (𝑥 ↑m 𝐶)) | |
11 | 7, 9, 10 | syl2anr 597 | . . . 4 ⊢ (((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V) ∧ (𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) → (𝐴 ↑m 𝐶) ≈ (𝑥 ↑m 𝐶)) |
12 | ovex 7395 | . . . . 5 ⊢ (𝐵 ↑m 𝐶) ∈ V | |
13 | 2 | ad2antrr 724 | . . . . . 6 ⊢ (((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V) ∧ (𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) → 𝐵 ∈ V) |
14 | simprr 771 | . . . . . 6 ⊢ (((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V) ∧ (𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) → 𝑥 ⊆ 𝐵) | |
15 | mapss 8834 | . . . . . 6 ⊢ ((𝐵 ∈ V ∧ 𝑥 ⊆ 𝐵) → (𝑥 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) | |
16 | 13, 14, 15 | syl2anc 584 | . . . . 5 ⊢ (((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V) ∧ (𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) → (𝑥 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) |
17 | ssdomg 8947 | . . . . 5 ⊢ ((𝐵 ↑m 𝐶) ∈ V → ((𝑥 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶) → (𝑥 ↑m 𝐶) ≼ (𝐵 ↑m 𝐶))) | |
18 | 12, 16, 17 | mpsyl 68 | . . . 4 ⊢ (((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V) ∧ (𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) → (𝑥 ↑m 𝐶) ≼ (𝐵 ↑m 𝐶)) |
19 | endomtr 8959 | . . . 4 ⊢ (((𝐴 ↑m 𝐶) ≈ (𝑥 ↑m 𝐶) ∧ (𝑥 ↑m 𝐶) ≼ (𝐵 ↑m 𝐶)) → (𝐴 ↑m 𝐶) ≼ (𝐵 ↑m 𝐶)) | |
20 | 11, 18, 19 | syl2anc 584 | . . 3 ⊢ (((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V) ∧ (𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) → (𝐴 ↑m 𝐶) ≼ (𝐵 ↑m 𝐶)) |
21 | 6, 20 | exlimddv 1938 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V) → (𝐴 ↑m 𝐶) ≼ (𝐵 ↑m 𝐶)) |
22 | elmapex 8793 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ↑m 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V)) | |
23 | 22 | simprd 496 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ↑m 𝐶) → 𝐶 ∈ V) |
24 | 23 | con3i 154 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → ¬ 𝑥 ∈ (𝐴 ↑m 𝐶)) |
25 | 24 | eq0rdv 4369 | . . . 4 ⊢ (¬ 𝐶 ∈ V → (𝐴 ↑m 𝐶) = ∅) |
26 | 25 | adantl 482 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ ¬ 𝐶 ∈ V) → (𝐴 ↑m 𝐶) = ∅) |
27 | 12 | 0dom 9057 | . . 3 ⊢ ∅ ≼ (𝐵 ↑m 𝐶) |
28 | 26, 27 | eqbrtrdi 5149 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ ¬ 𝐶 ∈ V) → (𝐴 ↑m 𝐶) ≼ (𝐵 ↑m 𝐶)) |
29 | 21, 28 | pm2.61dan 811 | 1 ⊢ (𝐴 ≼ 𝐵 → (𝐴 ↑m 𝐶) ≼ (𝐵 ↑m 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 Vcvv 3446 ⊆ wss 3913 ∅c0 4287 class class class wbr 5110 (class class class)co 7362 ↑m cmap 8772 ≈ cen 8887 ≼ cdom 8888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3406 df-v 3448 df-sbc 3743 df-csb 3859 df-dif 3916 df-un 3918 df-in 3920 df-ss 3930 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-ov 7365 df-oprab 7366 df-mpo 7367 df-1st 7926 df-2nd 7927 df-map 8774 df-en 8891 df-dom 8892 |
This theorem is referenced by: mappwen 10057 pwcfsdom 10528 cfpwsdom 10529 rpnnen 16120 rexpen 16121 hauspwdom 22889 |
Copyright terms: Public domain | W3C validator |