![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mapdom1 | Structured version Visualization version GIF version |
Description: Order-preserving property of set exponentiation. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 9-Mar-2013.) |
Ref | Expression |
---|---|
mapdom1 | ⊢ (𝐴 ≼ 𝐵 → (𝐴 ↑m 𝐶) ≼ (𝐵 ↑m 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 8940 | . . . . . . 7 ⊢ Rel ≼ | |
2 | 1 | brrelex2i 5723 | . . . . . 6 ⊢ (𝐴 ≼ 𝐵 → 𝐵 ∈ V) |
3 | domeng 8953 | . . . . . 6 ⊢ (𝐵 ∈ V → (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵))) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝐴 ≼ 𝐵 → (𝐴 ≼ 𝐵 ↔ ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵))) |
5 | 4 | ibi 267 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) |
6 | 5 | adantr 480 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V) → ∃𝑥(𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) |
7 | simpl 482 | . . . . 5 ⊢ ((𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵) → 𝐴 ≈ 𝑥) | |
8 | enrefg 8975 | . . . . . 6 ⊢ (𝐶 ∈ V → 𝐶 ≈ 𝐶) | |
9 | 8 | adantl 481 | . . . . 5 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V) → 𝐶 ≈ 𝐶) |
10 | mapen 9136 | . . . . 5 ⊢ ((𝐴 ≈ 𝑥 ∧ 𝐶 ≈ 𝐶) → (𝐴 ↑m 𝐶) ≈ (𝑥 ↑m 𝐶)) | |
11 | 7, 9, 10 | syl2anr 596 | . . . 4 ⊢ (((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V) ∧ (𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) → (𝐴 ↑m 𝐶) ≈ (𝑥 ↑m 𝐶)) |
12 | ovex 7434 | . . . . 5 ⊢ (𝐵 ↑m 𝐶) ∈ V | |
13 | 2 | ad2antrr 723 | . . . . . 6 ⊢ (((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V) ∧ (𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) → 𝐵 ∈ V) |
14 | simprr 770 | . . . . . 6 ⊢ (((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V) ∧ (𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) → 𝑥 ⊆ 𝐵) | |
15 | mapss 8878 | . . . . . 6 ⊢ ((𝐵 ∈ V ∧ 𝑥 ⊆ 𝐵) → (𝑥 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) | |
16 | 13, 14, 15 | syl2anc 583 | . . . . 5 ⊢ (((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V) ∧ (𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) → (𝑥 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) |
17 | ssdomg 8991 | . . . . 5 ⊢ ((𝐵 ↑m 𝐶) ∈ V → ((𝑥 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶) → (𝑥 ↑m 𝐶) ≼ (𝐵 ↑m 𝐶))) | |
18 | 12, 16, 17 | mpsyl 68 | . . . 4 ⊢ (((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V) ∧ (𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) → (𝑥 ↑m 𝐶) ≼ (𝐵 ↑m 𝐶)) |
19 | endomtr 9003 | . . . 4 ⊢ (((𝐴 ↑m 𝐶) ≈ (𝑥 ↑m 𝐶) ∧ (𝑥 ↑m 𝐶) ≼ (𝐵 ↑m 𝐶)) → (𝐴 ↑m 𝐶) ≼ (𝐵 ↑m 𝐶)) | |
20 | 11, 18, 19 | syl2anc 583 | . . 3 ⊢ (((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V) ∧ (𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵)) → (𝐴 ↑m 𝐶) ≼ (𝐵 ↑m 𝐶)) |
21 | 6, 20 | exlimddv 1930 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ V) → (𝐴 ↑m 𝐶) ≼ (𝐵 ↑m 𝐶)) |
22 | elmapex 8837 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ↑m 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V)) | |
23 | 22 | simprd 495 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ↑m 𝐶) → 𝐶 ∈ V) |
24 | 23 | con3i 154 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → ¬ 𝑥 ∈ (𝐴 ↑m 𝐶)) |
25 | 24 | eq0rdv 4396 | . . . 4 ⊢ (¬ 𝐶 ∈ V → (𝐴 ↑m 𝐶) = ∅) |
26 | 25 | adantl 481 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ ¬ 𝐶 ∈ V) → (𝐴 ↑m 𝐶) = ∅) |
27 | 12 | 0dom 9101 | . . 3 ⊢ ∅ ≼ (𝐵 ↑m 𝐶) |
28 | 26, 27 | eqbrtrdi 5177 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ ¬ 𝐶 ∈ V) → (𝐴 ↑m 𝐶) ≼ (𝐵 ↑m 𝐶)) |
29 | 21, 28 | pm2.61dan 810 | 1 ⊢ (𝐴 ≼ 𝐵 → (𝐴 ↑m 𝐶) ≼ (𝐵 ↑m 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 Vcvv 3466 ⊆ wss 3940 ∅c0 4314 class class class wbr 5138 (class class class)co 7401 ↑m cmap 8815 ≈ cen 8931 ≼ cdom 8932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-map 8817 df-en 8935 df-dom 8936 |
This theorem is referenced by: mappwen 10102 pwcfsdom 10573 cfpwsdom 10574 rpnnen 16166 rexpen 16167 hauspwdom 23315 |
Copyright terms: Public domain | W3C validator |