![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > recclnq | Structured version Visualization version GIF version |
Description: Closure law for positive fraction reciprocal. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
recclnq | โข (๐ด โ Q โ (*Qโ๐ด) โ Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recidnq 10966 | . . . 4 โข (๐ด โ Q โ (๐ด ยทQ (*Qโ๐ด)) = 1Q) | |
2 | 1nq 10929 | . . . 4 โข 1Q โ Q | |
3 | 1, 2 | eqeltrdi 2840 | . . 3 โข (๐ด โ Q โ (๐ด ยทQ (*Qโ๐ด)) โ Q) |
4 | mulnqf 10950 | . . . . 5 โข ยทQ :(Q ร Q)โถQ | |
5 | 4 | fdmi 6729 | . . . 4 โข dom ยทQ = (Q ร Q) |
6 | 0nnq 10925 | . . . 4 โข ยฌ โ โ Q | |
7 | 5, 6 | ndmovrcl 7597 | . . 3 โข ((๐ด ยทQ (*Qโ๐ด)) โ Q โ (๐ด โ Q โง (*Qโ๐ด) โ Q)) |
8 | 3, 7 | syl 17 | . 2 โข (๐ด โ Q โ (๐ด โ Q โง (*Qโ๐ด) โ Q)) |
9 | 8 | simprd 495 | 1 โข (๐ด โ Q โ (*Qโ๐ด) โ Q) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 395 โ wcel 2105 ร cxp 5674 โcfv 6543 (class class class)co 7412 Qcnq 10853 1Qc1q 10854 ยทQ cmq 10857 *Qcrq 10858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-oadd 8476 df-omul 8477 df-er 8709 df-ni 10873 df-mi 10875 df-lti 10876 df-mpq 10910 df-enq 10912 df-nq 10913 df-erq 10914 df-mq 10916 df-1nq 10917 df-rq 10918 |
This theorem is referenced by: recrecnq 10968 dmrecnq 10969 halfnq 10977 ltrnq 10980 mulclprlem 11020 prlem934 11034 prlem936 11048 reclem2pr 11049 reclem3pr 11050 reclem4pr 11051 |
Copyright terms: Public domain | W3C validator |