Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > recclnq | Structured version Visualization version GIF version |
Description: Closure law for positive fraction reciprocal. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
recclnq | ⊢ (𝐴 ∈ Q → (*Q‘𝐴) ∈ Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recidnq 10722 | . . . 4 ⊢ (𝐴 ∈ Q → (𝐴 ·Q (*Q‘𝐴)) = 1Q) | |
2 | 1nq 10685 | . . . 4 ⊢ 1Q ∈ Q | |
3 | 1, 2 | eqeltrdi 2849 | . . 3 ⊢ (𝐴 ∈ Q → (𝐴 ·Q (*Q‘𝐴)) ∈ Q) |
4 | mulnqf 10706 | . . . . 5 ⊢ ·Q :(Q × Q)⟶Q | |
5 | 4 | fdmi 6610 | . . . 4 ⊢ dom ·Q = (Q × Q) |
6 | 0nnq 10681 | . . . 4 ⊢ ¬ ∅ ∈ Q | |
7 | 5, 6 | ndmovrcl 7452 | . . 3 ⊢ ((𝐴 ·Q (*Q‘𝐴)) ∈ Q → (𝐴 ∈ Q ∧ (*Q‘𝐴) ∈ Q)) |
8 | 3, 7 | syl 17 | . 2 ⊢ (𝐴 ∈ Q → (𝐴 ∈ Q ∧ (*Q‘𝐴) ∈ Q)) |
9 | 8 | simprd 496 | 1 ⊢ (𝐴 ∈ Q → (*Q‘𝐴) ∈ Q) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2110 × cxp 5588 ‘cfv 6432 (class class class)co 7271 Qcnq 10609 1Qc1q 10610 ·Q cmq 10613 *Qcrq 10614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-oadd 8292 df-omul 8293 df-er 8481 df-ni 10629 df-mi 10631 df-lti 10632 df-mpq 10666 df-enq 10668 df-nq 10669 df-erq 10670 df-mq 10672 df-1nq 10673 df-rq 10674 |
This theorem is referenced by: recrecnq 10724 dmrecnq 10725 halfnq 10733 ltrnq 10736 mulclprlem 10776 prlem934 10790 prlem936 10804 reclem2pr 10805 reclem3pr 10806 reclem4pr 10807 |
Copyright terms: Public domain | W3C validator |