MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recclnq Structured version   Visualization version   GIF version

Theorem recclnq 10926
Description: Closure law for positive fraction reciprocal. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
recclnq (𝐴Q → (*Q𝐴) ∈ Q)

Proof of Theorem recclnq
StepHypRef Expression
1 recidnq 10925 . . . 4 (𝐴Q → (𝐴 ·Q (*Q𝐴)) = 1Q)
2 1nq 10888 . . . 4 1QQ
31, 2eqeltrdi 2837 . . 3 (𝐴Q → (𝐴 ·Q (*Q𝐴)) ∈ Q)
4 mulnqf 10909 . . . . 5 ·Q :(Q × Q)⟶Q
54fdmi 6702 . . . 4 dom ·Q = (Q × Q)
6 0nnq 10884 . . . 4 ¬ ∅ ∈ Q
75, 6ndmovrcl 7578 . . 3 ((𝐴 ·Q (*Q𝐴)) ∈ Q → (𝐴Q ∧ (*Q𝐴) ∈ Q))
83, 7syl 17 . 2 (𝐴Q → (𝐴Q ∧ (*Q𝐴) ∈ Q))
98simprd 495 1 (𝐴Q → (*Q𝐴) ∈ Q)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109   × cxp 5639  cfv 6514  (class class class)co 7390  Qcnq 10812  1Qc1q 10813   ·Q cmq 10816  *Qcrq 10817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-omul 8442  df-er 8674  df-ni 10832  df-mi 10834  df-lti 10835  df-mpq 10869  df-enq 10871  df-nq 10872  df-erq 10873  df-mq 10875  df-1nq 10876  df-rq 10877
This theorem is referenced by:  recrecnq  10927  dmrecnq  10928  halfnq  10936  ltrnq  10939  mulclprlem  10979  prlem934  10993  prlem936  11007  reclem2pr  11008  reclem3pr  11009  reclem4pr  11010
  Copyright terms: Public domain W3C validator