![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > recclnq | Structured version Visualization version GIF version |
Description: Closure law for positive fraction reciprocal. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
recclnq | โข (๐ด โ Q โ (*Qโ๐ด) โ Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recidnq 10956 | . . . 4 โข (๐ด โ Q โ (๐ด ยทQ (*Qโ๐ด)) = 1Q) | |
2 | 1nq 10919 | . . . 4 โข 1Q โ Q | |
3 | 1, 2 | eqeltrdi 2841 | . . 3 โข (๐ด โ Q โ (๐ด ยทQ (*Qโ๐ด)) โ Q) |
4 | mulnqf 10940 | . . . . 5 โข ยทQ :(Q ร Q)โถQ | |
5 | 4 | fdmi 6726 | . . . 4 โข dom ยทQ = (Q ร Q) |
6 | 0nnq 10915 | . . . 4 โข ยฌ โ โ Q | |
7 | 5, 6 | ndmovrcl 7589 | . . 3 โข ((๐ด ยทQ (*Qโ๐ด)) โ Q โ (๐ด โ Q โง (*Qโ๐ด) โ Q)) |
8 | 3, 7 | syl 17 | . 2 โข (๐ด โ Q โ (๐ด โ Q โง (*Qโ๐ด) โ Q)) |
9 | 8 | simprd 496 | 1 โข (๐ด โ Q โ (*Qโ๐ด) โ Q) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 396 โ wcel 2106 ร cxp 5673 โcfv 6540 (class class class)co 7405 Qcnq 10843 1Qc1q 10844 ยทQ cmq 10847 *Qcrq 10848 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-oadd 8466 df-omul 8467 df-er 8699 df-ni 10863 df-mi 10865 df-lti 10866 df-mpq 10900 df-enq 10902 df-nq 10903 df-erq 10904 df-mq 10906 df-1nq 10907 df-rq 10908 |
This theorem is referenced by: recrecnq 10958 dmrecnq 10959 halfnq 10967 ltrnq 10970 mulclprlem 11010 prlem934 11024 prlem936 11038 reclem2pr 11039 reclem3pr 11040 reclem4pr 11041 |
Copyright terms: Public domain | W3C validator |