Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrec2v Structured version   Visualization version   GIF version

Theorem setrec2v 46369
Description: Version of setrec2 46368 with a disjoint variable condition instead of a nonfreeness hypothesis. (Contributed by Emmett Weisz, 6-Mar-2021.)
Hypotheses
Ref Expression
setrec2.b 𝐵 = setrecs(𝐹)
setrec2.c (𝜑 → ∀𝑎(𝑎𝐶 → (𝐹𝑎) ⊆ 𝐶))
Assertion
Ref Expression
setrec2v (𝜑𝐵𝐶)
Distinct variable groups:   𝐹,𝑎   𝐶,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐵(𝑎)

Proof of Theorem setrec2v
StepHypRef Expression
1 nfcv 2907 . 2 𝑎𝐹
2 setrec2.b . 2 𝐵 = setrecs(𝐹)
3 setrec2.c . 2 (𝜑 → ∀𝑎(𝑎𝐶 → (𝐹𝑎) ⊆ 𝐶))
41, 2, 3setrec2 46368 1 (𝜑𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537   = wceq 1539  wss 3888  cfv 6435  setrecscsetrecs 46356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5211  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3433  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-br 5077  df-opab 5139  df-id 5491  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-iota 6393  df-fun 6437  df-fv 6443  df-setrecs 46357
This theorem is referenced by:  setis  46370  elsetrecslem  46371  setrecsss  46373  setrecsres  46374  0setrec  46376  onsetrec  46380
  Copyright terms: Public domain W3C validator