Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrec2v Structured version   Visualization version   GIF version

Theorem setrec2v 49685
Description: Version of setrec2 49684 with a disjoint variable condition instead of a nonfreeness hypothesis. (Contributed by Emmett Weisz, 6-Mar-2021.)
Hypotheses
Ref Expression
setrec2.b 𝐵 = setrecs(𝐹)
setrec2.c (𝜑 → ∀𝑎(𝑎𝐶 → (𝐹𝑎) ⊆ 𝐶))
Assertion
Ref Expression
setrec2v (𝜑𝐵𝐶)
Distinct variable groups:   𝐹,𝑎   𝐶,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐵(𝑎)

Proof of Theorem setrec2v
StepHypRef Expression
1 nfcv 2891 . 2 𝑎𝐹
2 setrec2.b . 2 𝐵 = setrecs(𝐹)
3 setrec2.c . 2 (𝜑 → ∀𝑎(𝑎𝐶 → (𝐹𝑎) ⊆ 𝐶))
41, 2, 3setrec2 49684 1 (𝜑𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538   = wceq 1540  wss 3905  cfv 6486  setrecscsetrecs 49672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fv 6494  df-setrecs 49673
This theorem is referenced by:  setis  49687  elsetrecslem  49688  setrecsss  49690  setrecsres  49691  0setrec  49693  onsetrec  49697
  Copyright terms: Public domain W3C validator