MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkeq Structured version   Visualization version   GIF version

Theorem wlkeq 29537
Description: Conditions for two walks (within the same graph) being the same. (Contributed by AV, 1-Jul-2018.) (Revised by AV, 16-May-2019.) (Revised by AV, 14-Apr-2021.)
Assertion
Ref Expression
wlkeq ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (♯‘(1st𝐴))) → (𝐴 = 𝐵 ↔ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑁
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem wlkeq
StepHypRef Expression
1 eqid 2729 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2729 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
3 eqid 2729 . . . . . . 7 (1st𝐴) = (1st𝐴)
4 eqid 2729 . . . . . . 7 (2nd𝐴) = (2nd𝐴)
51, 2, 3, 4wlkelwrd 29536 . . . . . 6 (𝐴 ∈ (Walks‘𝐺) → ((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)))
6 eqid 2729 . . . . . . 7 (1st𝐵) = (1st𝐵)
7 eqid 2729 . . . . . . 7 (2nd𝐵) = (2nd𝐵)
81, 2, 6, 7wlkelwrd 29536 . . . . . 6 (𝐵 ∈ (Walks‘𝐺) → ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺)))
95, 8anim12i 613 . . . . 5 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) → (((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺))))
10 wlkop 29531 . . . . . . 7 (𝐴 ∈ (Walks‘𝐺) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
11 eleq1 2816 . . . . . . . 8 (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ → (𝐴 ∈ (Walks‘𝐺) ↔ ⟨(1st𝐴), (2nd𝐴)⟩ ∈ (Walks‘𝐺)))
12 df-br 5103 . . . . . . . . 9 ((1st𝐴)(Walks‘𝐺)(2nd𝐴) ↔ ⟨(1st𝐴), (2nd𝐴)⟩ ∈ (Walks‘𝐺))
13 wlklenvm1 29525 . . . . . . . . 9 ((1st𝐴)(Walks‘𝐺)(2nd𝐴) → (♯‘(1st𝐴)) = ((♯‘(2nd𝐴)) − 1))
1412, 13sylbir 235 . . . . . . . 8 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ (Walks‘𝐺) → (♯‘(1st𝐴)) = ((♯‘(2nd𝐴)) − 1))
1511, 14biimtrdi 253 . . . . . . 7 (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ → (𝐴 ∈ (Walks‘𝐺) → (♯‘(1st𝐴)) = ((♯‘(2nd𝐴)) − 1)))
1610, 15mpcom 38 . . . . . 6 (𝐴 ∈ (Walks‘𝐺) → (♯‘(1st𝐴)) = ((♯‘(2nd𝐴)) − 1))
17 wlkop 29531 . . . . . . 7 (𝐵 ∈ (Walks‘𝐺) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
18 eleq1 2816 . . . . . . . 8 (𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩ → (𝐵 ∈ (Walks‘𝐺) ↔ ⟨(1st𝐵), (2nd𝐵)⟩ ∈ (Walks‘𝐺)))
19 df-br 5103 . . . . . . . . 9 ((1st𝐵)(Walks‘𝐺)(2nd𝐵) ↔ ⟨(1st𝐵), (2nd𝐵)⟩ ∈ (Walks‘𝐺))
20 wlklenvm1 29525 . . . . . . . . 9 ((1st𝐵)(Walks‘𝐺)(2nd𝐵) → (♯‘(1st𝐵)) = ((♯‘(2nd𝐵)) − 1))
2119, 20sylbir 235 . . . . . . . 8 (⟨(1st𝐵), (2nd𝐵)⟩ ∈ (Walks‘𝐺) → (♯‘(1st𝐵)) = ((♯‘(2nd𝐵)) − 1))
2218, 21biimtrdi 253 . . . . . . 7 (𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩ → (𝐵 ∈ (Walks‘𝐺) → (♯‘(1st𝐵)) = ((♯‘(2nd𝐵)) − 1)))
2317, 22mpcom 38 . . . . . 6 (𝐵 ∈ (Walks‘𝐺) → (♯‘(1st𝐵)) = ((♯‘(2nd𝐵)) − 1))
2416, 23anim12i 613 . . . . 5 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) → ((♯‘(1st𝐴)) = ((♯‘(2nd𝐴)) − 1) ∧ (♯‘(1st𝐵)) = ((♯‘(2nd𝐵)) − 1)))
25 eqwrd 14498 . . . . . . . 8 (((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (1st𝐵) ∈ Word dom (iEdg‘𝐺)) → ((1st𝐴) = (1st𝐵) ↔ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥))))
2625ad2ant2r 747 . . . . . . 7 ((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺))) → ((1st𝐴) = (1st𝐵) ↔ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥))))
2726adantr 480 . . . . . 6 (((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺))) ∧ ((♯‘(1st𝐴)) = ((♯‘(2nd𝐴)) − 1) ∧ (♯‘(1st𝐵)) = ((♯‘(2nd𝐵)) − 1))) → ((1st𝐴) = (1st𝐵) ↔ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥))))
28 lencl 14474 . . . . . . . . 9 ((1st𝐴) ∈ Word dom (iEdg‘𝐺) → (♯‘(1st𝐴)) ∈ ℕ0)
2928adantr 480 . . . . . . . 8 (((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) → (♯‘(1st𝐴)) ∈ ℕ0)
30 simpr 484 . . . . . . . 8 (((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) → (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺))
31 simpr 484 . . . . . . . 8 (((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺)) → (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺))
32 2ffzeq 13586 . . . . . . . 8 (((♯‘(1st𝐴)) ∈ ℕ0 ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺)) → ((2nd𝐴) = (2nd𝐵) ↔ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
3329, 30, 31, 32syl2an3an 1424 . . . . . . 7 ((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺))) → ((2nd𝐴) = (2nd𝐵) ↔ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
3433adantr 480 . . . . . 6 (((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺))) ∧ ((♯‘(1st𝐴)) = ((♯‘(2nd𝐴)) − 1) ∧ (♯‘(1st𝐵)) = ((♯‘(2nd𝐵)) − 1))) → ((2nd𝐴) = (2nd𝐵) ↔ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
3527, 34anbi12d 632 . . . . 5 (((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺))) ∧ ((♯‘(1st𝐴)) = ((♯‘(2nd𝐴)) − 1) ∧ (♯‘(1st𝐵)) = ((♯‘(2nd𝐵)) − 1))) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ (((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))))
369, 24, 35syl2anc 584 . . . 4 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ (((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))))
37363adant3 1132 . . 3 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (♯‘(1st𝐴))) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ (((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))))
38 eqeq1 2733 . . . . . . 7 (𝑁 = (♯‘(1st𝐴)) → (𝑁 = (♯‘(1st𝐵)) ↔ (♯‘(1st𝐴)) = (♯‘(1st𝐵))))
39 oveq2 7377 . . . . . . . 8 (𝑁 = (♯‘(1st𝐴)) → (0..^𝑁) = (0..^(♯‘(1st𝐴))))
4039raleqdv 3296 . . . . . . 7 (𝑁 = (♯‘(1st𝐴)) → (∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ↔ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)))
4138, 40anbi12d 632 . . . . . 6 (𝑁 = (♯‘(1st𝐴)) → ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ↔ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥))))
42 oveq2 7377 . . . . . . . 8 (𝑁 = (♯‘(1st𝐴)) → (0...𝑁) = (0...(♯‘(1st𝐴))))
4342raleqdv 3296 . . . . . . 7 (𝑁 = (♯‘(1st𝐴)) → (∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥) ↔ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))
4438, 43anbi12d 632 . . . . . 6 (𝑁 = (♯‘(1st𝐴)) → ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)) ↔ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
4541, 44anbi12d 632 . . . . 5 (𝑁 = (♯‘(1st𝐴)) → (((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))) ↔ (((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))))
4645bibi2d 342 . . . 4 (𝑁 = (♯‘(1st𝐴)) → ((((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))) ↔ (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ (((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))))
47463ad2ant3 1135 . . 3 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (♯‘(1st𝐴))) → ((((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))) ↔ (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ (((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))))
4837, 47mpbird 257 . 2 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (♯‘(1st𝐴))) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))))
49 1st2ndb 7987 . . . . 5 (𝐴 ∈ (V × V) ↔ 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
5010, 49sylibr 234 . . . 4 (𝐴 ∈ (Walks‘𝐺) → 𝐴 ∈ (V × V))
51 1st2ndb 7987 . . . . 5 (𝐵 ∈ (V × V) ↔ 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
5217, 51sylibr 234 . . . 4 (𝐵 ∈ (Walks‘𝐺) → 𝐵 ∈ (V × V))
53 xpopth 7988 . . . 4 ((𝐴 ∈ (V × V) ∧ 𝐵 ∈ (V × V)) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ 𝐴 = 𝐵))
5450, 52, 53syl2an 596 . . 3 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ 𝐴 = 𝐵))
55543adant3 1132 . 2 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (♯‘(1st𝐴))) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ 𝐴 = 𝐵))
56 3anass 1094 . . . 4 ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)) ↔ (𝑁 = (♯‘(1st𝐵)) ∧ (∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
57 anandi 676 . . . 4 ((𝑁 = (♯‘(1st𝐵)) ∧ (∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))) ↔ ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
5856, 57bitr2i 276 . . 3 (((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))) ↔ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))
5958a1i 11 . 2 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (♯‘(1st𝐴))) → (((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))) ↔ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
6048, 55, 593bitr3d 309 1 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (♯‘(1st𝐴))) → (𝐴 = 𝐵 ↔ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  cop 4591   class class class wbr 5102   × cxp 5629  dom cdm 5631  wf 6495  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  0cc0 11044  1c1 11045  cmin 11381  0cn0 12418  ...cfz 13444  ..^cfzo 13591  chash 14271  Word cword 14454  Vtxcvtx 28899  iEdgciedg 28900  Walkscwlks 29500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-wlks 29503
This theorem is referenced by:  uspgr2wlkeq  29549
  Copyright terms: Public domain W3C validator