MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkeq Structured version   Visualization version   GIF version

Theorem wlkeq 28410
Description: Conditions for two walks (within the same graph) being the same. (Contributed by AV, 1-Jul-2018.) (Revised by AV, 16-May-2019.) (Revised by AV, 14-Apr-2021.)
Assertion
Ref Expression
wlkeq ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (♯‘(1st𝐴))) → (𝐴 = 𝐵 ↔ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑁
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem wlkeq
StepHypRef Expression
1 eqid 2737 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2737 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
3 eqid 2737 . . . . . . 7 (1st𝐴) = (1st𝐴)
4 eqid 2737 . . . . . . 7 (2nd𝐴) = (2nd𝐴)
51, 2, 3, 4wlkelwrd 28409 . . . . . 6 (𝐴 ∈ (Walks‘𝐺) → ((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)))
6 eqid 2737 . . . . . . 7 (1st𝐵) = (1st𝐵)
7 eqid 2737 . . . . . . 7 (2nd𝐵) = (2nd𝐵)
81, 2, 6, 7wlkelwrd 28409 . . . . . 6 (𝐵 ∈ (Walks‘𝐺) → ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺)))
95, 8anim12i 613 . . . . 5 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) → (((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺))))
10 wlkop 28404 . . . . . . 7 (𝐴 ∈ (Walks‘𝐺) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
11 eleq1 2825 . . . . . . . 8 (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ → (𝐴 ∈ (Walks‘𝐺) ↔ ⟨(1st𝐴), (2nd𝐴)⟩ ∈ (Walks‘𝐺)))
12 df-br 5104 . . . . . . . . 9 ((1st𝐴)(Walks‘𝐺)(2nd𝐴) ↔ ⟨(1st𝐴), (2nd𝐴)⟩ ∈ (Walks‘𝐺))
13 wlklenvm1 28398 . . . . . . . . 9 ((1st𝐴)(Walks‘𝐺)(2nd𝐴) → (♯‘(1st𝐴)) = ((♯‘(2nd𝐴)) − 1))
1412, 13sylbir 234 . . . . . . . 8 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ (Walks‘𝐺) → (♯‘(1st𝐴)) = ((♯‘(2nd𝐴)) − 1))
1511, 14syl6bi 252 . . . . . . 7 (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ → (𝐴 ∈ (Walks‘𝐺) → (♯‘(1st𝐴)) = ((♯‘(2nd𝐴)) − 1)))
1610, 15mpcom 38 . . . . . 6 (𝐴 ∈ (Walks‘𝐺) → (♯‘(1st𝐴)) = ((♯‘(2nd𝐴)) − 1))
17 wlkop 28404 . . . . . . 7 (𝐵 ∈ (Walks‘𝐺) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
18 eleq1 2825 . . . . . . . 8 (𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩ → (𝐵 ∈ (Walks‘𝐺) ↔ ⟨(1st𝐵), (2nd𝐵)⟩ ∈ (Walks‘𝐺)))
19 df-br 5104 . . . . . . . . 9 ((1st𝐵)(Walks‘𝐺)(2nd𝐵) ↔ ⟨(1st𝐵), (2nd𝐵)⟩ ∈ (Walks‘𝐺))
20 wlklenvm1 28398 . . . . . . . . 9 ((1st𝐵)(Walks‘𝐺)(2nd𝐵) → (♯‘(1st𝐵)) = ((♯‘(2nd𝐵)) − 1))
2119, 20sylbir 234 . . . . . . . 8 (⟨(1st𝐵), (2nd𝐵)⟩ ∈ (Walks‘𝐺) → (♯‘(1st𝐵)) = ((♯‘(2nd𝐵)) − 1))
2218, 21syl6bi 252 . . . . . . 7 (𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩ → (𝐵 ∈ (Walks‘𝐺) → (♯‘(1st𝐵)) = ((♯‘(2nd𝐵)) − 1)))
2317, 22mpcom 38 . . . . . 6 (𝐵 ∈ (Walks‘𝐺) → (♯‘(1st𝐵)) = ((♯‘(2nd𝐵)) − 1))
2416, 23anim12i 613 . . . . 5 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) → ((♯‘(1st𝐴)) = ((♯‘(2nd𝐴)) − 1) ∧ (♯‘(1st𝐵)) = ((♯‘(2nd𝐵)) − 1)))
25 eqwrd 14398 . . . . . . . 8 (((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (1st𝐵) ∈ Word dom (iEdg‘𝐺)) → ((1st𝐴) = (1st𝐵) ↔ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥))))
2625ad2ant2r 745 . . . . . . 7 ((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺))) → ((1st𝐴) = (1st𝐵) ↔ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥))))
2726adantr 481 . . . . . 6 (((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺))) ∧ ((♯‘(1st𝐴)) = ((♯‘(2nd𝐴)) − 1) ∧ (♯‘(1st𝐵)) = ((♯‘(2nd𝐵)) − 1))) → ((1st𝐴) = (1st𝐵) ↔ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥))))
28 lencl 14374 . . . . . . . . 9 ((1st𝐴) ∈ Word dom (iEdg‘𝐺) → (♯‘(1st𝐴)) ∈ ℕ0)
2928adantr 481 . . . . . . . 8 (((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) → (♯‘(1st𝐴)) ∈ ℕ0)
30 simpr 485 . . . . . . . 8 (((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) → (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺))
31 simpr 485 . . . . . . . 8 (((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺)) → (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺))
32 2ffzeq 13516 . . . . . . . 8 (((♯‘(1st𝐴)) ∈ ℕ0 ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺)) → ((2nd𝐴) = (2nd𝐵) ↔ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
3329, 30, 31, 32syl2an3an 1422 . . . . . . 7 ((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺))) → ((2nd𝐴) = (2nd𝐵) ↔ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
3433adantr 481 . . . . . 6 (((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺))) ∧ ((♯‘(1st𝐴)) = ((♯‘(2nd𝐴)) − 1) ∧ (♯‘(1st𝐵)) = ((♯‘(2nd𝐵)) − 1))) → ((2nd𝐴) = (2nd𝐵) ↔ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
3527, 34anbi12d 631 . . . . 5 (((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺))) ∧ ((♯‘(1st𝐴)) = ((♯‘(2nd𝐴)) − 1) ∧ (♯‘(1st𝐵)) = ((♯‘(2nd𝐵)) − 1))) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ (((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))))
369, 24, 35syl2anc 584 . . . 4 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ (((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))))
37363adant3 1132 . . 3 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (♯‘(1st𝐴))) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ (((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))))
38 eqeq1 2741 . . . . . . 7 (𝑁 = (♯‘(1st𝐴)) → (𝑁 = (♯‘(1st𝐵)) ↔ (♯‘(1st𝐴)) = (♯‘(1st𝐵))))
39 oveq2 7359 . . . . . . . 8 (𝑁 = (♯‘(1st𝐴)) → (0..^𝑁) = (0..^(♯‘(1st𝐴))))
4039raleqdv 3311 . . . . . . 7 (𝑁 = (♯‘(1st𝐴)) → (∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ↔ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)))
4138, 40anbi12d 631 . . . . . 6 (𝑁 = (♯‘(1st𝐴)) → ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ↔ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥))))
42 oveq2 7359 . . . . . . . 8 (𝑁 = (♯‘(1st𝐴)) → (0...𝑁) = (0...(♯‘(1st𝐴))))
4342raleqdv 3311 . . . . . . 7 (𝑁 = (♯‘(1st𝐴)) → (∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥) ↔ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))
4438, 43anbi12d 631 . . . . . 6 (𝑁 = (♯‘(1st𝐴)) → ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)) ↔ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
4541, 44anbi12d 631 . . . . 5 (𝑁 = (♯‘(1st𝐴)) → (((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))) ↔ (((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))))
4645bibi2d 342 . . . 4 (𝑁 = (♯‘(1st𝐴)) → ((((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))) ↔ (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ (((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))))
47463ad2ant3 1135 . . 3 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (♯‘(1st𝐴))) → ((((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))) ↔ (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ (((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))))
4837, 47mpbird 256 . 2 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (♯‘(1st𝐴))) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))))
49 1st2ndb 7953 . . . . 5 (𝐴 ∈ (V × V) ↔ 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
5010, 49sylibr 233 . . . 4 (𝐴 ∈ (Walks‘𝐺) → 𝐴 ∈ (V × V))
51 1st2ndb 7953 . . . . 5 (𝐵 ∈ (V × V) ↔ 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
5217, 51sylibr 233 . . . 4 (𝐵 ∈ (Walks‘𝐺) → 𝐵 ∈ (V × V))
53 xpopth 7954 . . . 4 ((𝐴 ∈ (V × V) ∧ 𝐵 ∈ (V × V)) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ 𝐴 = 𝐵))
5450, 52, 53syl2an 596 . . 3 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ 𝐴 = 𝐵))
55543adant3 1132 . 2 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (♯‘(1st𝐴))) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ 𝐴 = 𝐵))
56 3anass 1095 . . . 4 ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)) ↔ (𝑁 = (♯‘(1st𝐵)) ∧ (∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
57 anandi 674 . . . 4 ((𝑁 = (♯‘(1st𝐵)) ∧ (∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))) ↔ ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
5856, 57bitr2i 275 . . 3 (((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))) ↔ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))
5958a1i 11 . 2 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (♯‘(1st𝐴))) → (((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))) ↔ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
6048, 55, 593bitr3d 308 1 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (♯‘(1st𝐴))) → (𝐴 = 𝐵 ↔ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3062  Vcvv 3443  cop 4590   class class class wbr 5103   × cxp 5629  dom cdm 5631  wf 6489  cfv 6493  (class class class)co 7351  1st c1st 7911  2nd c2nd 7912  0cc0 11009  1c1 11010  cmin 11343  0cn0 12371  ...cfz 13378  ..^cfzo 13521  chash 14183  Word cword 14355  Vtxcvtx 27775  iEdgciedg 27776  Walkscwlks 28372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-riota 7307  df-ov 7354  df-oprab 7355  df-mpo 7356  df-om 7795  df-1st 7913  df-2nd 7914  df-frecs 8204  df-wrecs 8235  df-recs 8309  df-rdg 8348  df-1o 8404  df-er 8606  df-map 8725  df-pm 8726  df-en 8842  df-dom 8843  df-sdom 8844  df-fin 8845  df-card 9833  df-pnf 11149  df-mnf 11150  df-xr 11151  df-ltxr 11152  df-le 11153  df-sub 11345  df-neg 11346  df-nn 12112  df-n0 12372  df-z 12458  df-uz 12722  df-fz 13379  df-fzo 13522  df-hash 14184  df-word 14356  df-wlks 28375
This theorem is referenced by:  uspgr2wlkeq  28422
  Copyright terms: Public domain W3C validator