MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkeq Structured version   Visualization version   GIF version

Theorem wlkeq 28891
Description: Conditions for two walks (within the same graph) being the same. (Contributed by AV, 1-Jul-2018.) (Revised by AV, 16-May-2019.) (Revised by AV, 14-Apr-2021.)
Assertion
Ref Expression
wlkeq ((𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) β†’ (𝐴 = 𝐡 ↔ (𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0..^𝑁)((1st β€˜π΄)β€˜π‘₯) = ((1st β€˜π΅)β€˜π‘₯) ∧ βˆ€π‘₯ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘₯) = ((2nd β€˜π΅)β€˜π‘₯))))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐡   π‘₯,𝑁
Allowed substitution hint:   𝐺(π‘₯)

Proof of Theorem wlkeq
StepHypRef Expression
1 eqid 2733 . . . . . . 7 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
2 eqid 2733 . . . . . . 7 (iEdgβ€˜πΊ) = (iEdgβ€˜πΊ)
3 eqid 2733 . . . . . . 7 (1st β€˜π΄) = (1st β€˜π΄)
4 eqid 2733 . . . . . . 7 (2nd β€˜π΄) = (2nd β€˜π΄)
51, 2, 3, 4wlkelwrd 28890 . . . . . 6 (𝐴 ∈ (Walksβ€˜πΊ) β†’ ((1st β€˜π΄) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΄):(0...(β™―β€˜(1st β€˜π΄)))⟢(Vtxβ€˜πΊ)))
6 eqid 2733 . . . . . . 7 (1st β€˜π΅) = (1st β€˜π΅)
7 eqid 2733 . . . . . . 7 (2nd β€˜π΅) = (2nd β€˜π΅)
81, 2, 6, 7wlkelwrd 28890 . . . . . 6 (𝐡 ∈ (Walksβ€˜πΊ) β†’ ((1st β€˜π΅) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΅):(0...(β™―β€˜(1st β€˜π΅)))⟢(Vtxβ€˜πΊ)))
95, 8anim12i 614 . . . . 5 ((𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) β†’ (((1st β€˜π΄) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΄):(0...(β™―β€˜(1st β€˜π΄)))⟢(Vtxβ€˜πΊ)) ∧ ((1st β€˜π΅) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΅):(0...(β™―β€˜(1st β€˜π΅)))⟢(Vtxβ€˜πΊ))))
10 wlkop 28885 . . . . . . 7 (𝐴 ∈ (Walksβ€˜πΊ) β†’ 𝐴 = ⟨(1st β€˜π΄), (2nd β€˜π΄)⟩)
11 eleq1 2822 . . . . . . . 8 (𝐴 = ⟨(1st β€˜π΄), (2nd β€˜π΄)⟩ β†’ (𝐴 ∈ (Walksβ€˜πΊ) ↔ ⟨(1st β€˜π΄), (2nd β€˜π΄)⟩ ∈ (Walksβ€˜πΊ)))
12 df-br 5150 . . . . . . . . 9 ((1st β€˜π΄)(Walksβ€˜πΊ)(2nd β€˜π΄) ↔ ⟨(1st β€˜π΄), (2nd β€˜π΄)⟩ ∈ (Walksβ€˜πΊ))
13 wlklenvm1 28879 . . . . . . . . 9 ((1st β€˜π΄)(Walksβ€˜πΊ)(2nd β€˜π΄) β†’ (β™―β€˜(1st β€˜π΄)) = ((β™―β€˜(2nd β€˜π΄)) βˆ’ 1))
1412, 13sylbir 234 . . . . . . . 8 (⟨(1st β€˜π΄), (2nd β€˜π΄)⟩ ∈ (Walksβ€˜πΊ) β†’ (β™―β€˜(1st β€˜π΄)) = ((β™―β€˜(2nd β€˜π΄)) βˆ’ 1))
1511, 14syl6bi 253 . . . . . . 7 (𝐴 = ⟨(1st β€˜π΄), (2nd β€˜π΄)⟩ β†’ (𝐴 ∈ (Walksβ€˜πΊ) β†’ (β™―β€˜(1st β€˜π΄)) = ((β™―β€˜(2nd β€˜π΄)) βˆ’ 1)))
1610, 15mpcom 38 . . . . . 6 (𝐴 ∈ (Walksβ€˜πΊ) β†’ (β™―β€˜(1st β€˜π΄)) = ((β™―β€˜(2nd β€˜π΄)) βˆ’ 1))
17 wlkop 28885 . . . . . . 7 (𝐡 ∈ (Walksβ€˜πΊ) β†’ 𝐡 = ⟨(1st β€˜π΅), (2nd β€˜π΅)⟩)
18 eleq1 2822 . . . . . . . 8 (𝐡 = ⟨(1st β€˜π΅), (2nd β€˜π΅)⟩ β†’ (𝐡 ∈ (Walksβ€˜πΊ) ↔ ⟨(1st β€˜π΅), (2nd β€˜π΅)⟩ ∈ (Walksβ€˜πΊ)))
19 df-br 5150 . . . . . . . . 9 ((1st β€˜π΅)(Walksβ€˜πΊ)(2nd β€˜π΅) ↔ ⟨(1st β€˜π΅), (2nd β€˜π΅)⟩ ∈ (Walksβ€˜πΊ))
20 wlklenvm1 28879 . . . . . . . . 9 ((1st β€˜π΅)(Walksβ€˜πΊ)(2nd β€˜π΅) β†’ (β™―β€˜(1st β€˜π΅)) = ((β™―β€˜(2nd β€˜π΅)) βˆ’ 1))
2119, 20sylbir 234 . . . . . . . 8 (⟨(1st β€˜π΅), (2nd β€˜π΅)⟩ ∈ (Walksβ€˜πΊ) β†’ (β™―β€˜(1st β€˜π΅)) = ((β™―β€˜(2nd β€˜π΅)) βˆ’ 1))
2218, 21syl6bi 253 . . . . . . 7 (𝐡 = ⟨(1st β€˜π΅), (2nd β€˜π΅)⟩ β†’ (𝐡 ∈ (Walksβ€˜πΊ) β†’ (β™―β€˜(1st β€˜π΅)) = ((β™―β€˜(2nd β€˜π΅)) βˆ’ 1)))
2317, 22mpcom 38 . . . . . 6 (𝐡 ∈ (Walksβ€˜πΊ) β†’ (β™―β€˜(1st β€˜π΅)) = ((β™―β€˜(2nd β€˜π΅)) βˆ’ 1))
2416, 23anim12i 614 . . . . 5 ((𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) β†’ ((β™―β€˜(1st β€˜π΄)) = ((β™―β€˜(2nd β€˜π΄)) βˆ’ 1) ∧ (β™―β€˜(1st β€˜π΅)) = ((β™―β€˜(2nd β€˜π΅)) βˆ’ 1)))
25 eqwrd 14507 . . . . . . . 8 (((1st β€˜π΄) ∈ Word dom (iEdgβ€˜πΊ) ∧ (1st β€˜π΅) ∈ Word dom (iEdgβ€˜πΊ)) β†’ ((1st β€˜π΄) = (1st β€˜π΅) ↔ ((β™―β€˜(1st β€˜π΄)) = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0..^(β™―β€˜(1st β€˜π΄)))((1st β€˜π΄)β€˜π‘₯) = ((1st β€˜π΅)β€˜π‘₯))))
2625ad2ant2r 746 . . . . . . 7 ((((1st β€˜π΄) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΄):(0...(β™―β€˜(1st β€˜π΄)))⟢(Vtxβ€˜πΊ)) ∧ ((1st β€˜π΅) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΅):(0...(β™―β€˜(1st β€˜π΅)))⟢(Vtxβ€˜πΊ))) β†’ ((1st β€˜π΄) = (1st β€˜π΅) ↔ ((β™―β€˜(1st β€˜π΄)) = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0..^(β™―β€˜(1st β€˜π΄)))((1st β€˜π΄)β€˜π‘₯) = ((1st β€˜π΅)β€˜π‘₯))))
2726adantr 482 . . . . . 6 (((((1st β€˜π΄) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΄):(0...(β™―β€˜(1st β€˜π΄)))⟢(Vtxβ€˜πΊ)) ∧ ((1st β€˜π΅) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΅):(0...(β™―β€˜(1st β€˜π΅)))⟢(Vtxβ€˜πΊ))) ∧ ((β™―β€˜(1st β€˜π΄)) = ((β™―β€˜(2nd β€˜π΄)) βˆ’ 1) ∧ (β™―β€˜(1st β€˜π΅)) = ((β™―β€˜(2nd β€˜π΅)) βˆ’ 1))) β†’ ((1st β€˜π΄) = (1st β€˜π΅) ↔ ((β™―β€˜(1st β€˜π΄)) = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0..^(β™―β€˜(1st β€˜π΄)))((1st β€˜π΄)β€˜π‘₯) = ((1st β€˜π΅)β€˜π‘₯))))
28 lencl 14483 . . . . . . . . 9 ((1st β€˜π΄) ∈ Word dom (iEdgβ€˜πΊ) β†’ (β™―β€˜(1st β€˜π΄)) ∈ β„•0)
2928adantr 482 . . . . . . . 8 (((1st β€˜π΄) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΄):(0...(β™―β€˜(1st β€˜π΄)))⟢(Vtxβ€˜πΊ)) β†’ (β™―β€˜(1st β€˜π΄)) ∈ β„•0)
30 simpr 486 . . . . . . . 8 (((1st β€˜π΄) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΄):(0...(β™―β€˜(1st β€˜π΄)))⟢(Vtxβ€˜πΊ)) β†’ (2nd β€˜π΄):(0...(β™―β€˜(1st β€˜π΄)))⟢(Vtxβ€˜πΊ))
31 simpr 486 . . . . . . . 8 (((1st β€˜π΅) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΅):(0...(β™―β€˜(1st β€˜π΅)))⟢(Vtxβ€˜πΊ)) β†’ (2nd β€˜π΅):(0...(β™―β€˜(1st β€˜π΅)))⟢(Vtxβ€˜πΊ))
32 2ffzeq 13622 . . . . . . . 8 (((β™―β€˜(1st β€˜π΄)) ∈ β„•0 ∧ (2nd β€˜π΄):(0...(β™―β€˜(1st β€˜π΄)))⟢(Vtxβ€˜πΊ) ∧ (2nd β€˜π΅):(0...(β™―β€˜(1st β€˜π΅)))⟢(Vtxβ€˜πΊ)) β†’ ((2nd β€˜π΄) = (2nd β€˜π΅) ↔ ((β™―β€˜(1st β€˜π΄)) = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0...(β™―β€˜(1st β€˜π΄)))((2nd β€˜π΄)β€˜π‘₯) = ((2nd β€˜π΅)β€˜π‘₯))))
3329, 30, 31, 32syl2an3an 1423 . . . . . . 7 ((((1st β€˜π΄) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΄):(0...(β™―β€˜(1st β€˜π΄)))⟢(Vtxβ€˜πΊ)) ∧ ((1st β€˜π΅) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΅):(0...(β™―β€˜(1st β€˜π΅)))⟢(Vtxβ€˜πΊ))) β†’ ((2nd β€˜π΄) = (2nd β€˜π΅) ↔ ((β™―β€˜(1st β€˜π΄)) = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0...(β™―β€˜(1st β€˜π΄)))((2nd β€˜π΄)β€˜π‘₯) = ((2nd β€˜π΅)β€˜π‘₯))))
3433adantr 482 . . . . . 6 (((((1st β€˜π΄) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΄):(0...(β™―β€˜(1st β€˜π΄)))⟢(Vtxβ€˜πΊ)) ∧ ((1st β€˜π΅) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΅):(0...(β™―β€˜(1st β€˜π΅)))⟢(Vtxβ€˜πΊ))) ∧ ((β™―β€˜(1st β€˜π΄)) = ((β™―β€˜(2nd β€˜π΄)) βˆ’ 1) ∧ (β™―β€˜(1st β€˜π΅)) = ((β™―β€˜(2nd β€˜π΅)) βˆ’ 1))) β†’ ((2nd β€˜π΄) = (2nd β€˜π΅) ↔ ((β™―β€˜(1st β€˜π΄)) = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0...(β™―β€˜(1st β€˜π΄)))((2nd β€˜π΄)β€˜π‘₯) = ((2nd β€˜π΅)β€˜π‘₯))))
3527, 34anbi12d 632 . . . . 5 (((((1st β€˜π΄) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΄):(0...(β™―β€˜(1st β€˜π΄)))⟢(Vtxβ€˜πΊ)) ∧ ((1st β€˜π΅) ∈ Word dom (iEdgβ€˜πΊ) ∧ (2nd β€˜π΅):(0...(β™―β€˜(1st β€˜π΅)))⟢(Vtxβ€˜πΊ))) ∧ ((β™―β€˜(1st β€˜π΄)) = ((β™―β€˜(2nd β€˜π΄)) βˆ’ 1) ∧ (β™―β€˜(1st β€˜π΅)) = ((β™―β€˜(2nd β€˜π΅)) βˆ’ 1))) β†’ (((1st β€˜π΄) = (1st β€˜π΅) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) ↔ (((β™―β€˜(1st β€˜π΄)) = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0..^(β™―β€˜(1st β€˜π΄)))((1st β€˜π΄)β€˜π‘₯) = ((1st β€˜π΅)β€˜π‘₯)) ∧ ((β™―β€˜(1st β€˜π΄)) = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0...(β™―β€˜(1st β€˜π΄)))((2nd β€˜π΄)β€˜π‘₯) = ((2nd β€˜π΅)β€˜π‘₯)))))
369, 24, 35syl2anc 585 . . . 4 ((𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) β†’ (((1st β€˜π΄) = (1st β€˜π΅) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) ↔ (((β™―β€˜(1st β€˜π΄)) = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0..^(β™―β€˜(1st β€˜π΄)))((1st β€˜π΄)β€˜π‘₯) = ((1st β€˜π΅)β€˜π‘₯)) ∧ ((β™―β€˜(1st β€˜π΄)) = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0...(β™―β€˜(1st β€˜π΄)))((2nd β€˜π΄)β€˜π‘₯) = ((2nd β€˜π΅)β€˜π‘₯)))))
37363adant3 1133 . . 3 ((𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) β†’ (((1st β€˜π΄) = (1st β€˜π΅) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) ↔ (((β™―β€˜(1st β€˜π΄)) = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0..^(β™―β€˜(1st β€˜π΄)))((1st β€˜π΄)β€˜π‘₯) = ((1st β€˜π΅)β€˜π‘₯)) ∧ ((β™―β€˜(1st β€˜π΄)) = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0...(β™―β€˜(1st β€˜π΄)))((2nd β€˜π΄)β€˜π‘₯) = ((2nd β€˜π΅)β€˜π‘₯)))))
38 eqeq1 2737 . . . . . . 7 (𝑁 = (β™―β€˜(1st β€˜π΄)) β†’ (𝑁 = (β™―β€˜(1st β€˜π΅)) ↔ (β™―β€˜(1st β€˜π΄)) = (β™―β€˜(1st β€˜π΅))))
39 oveq2 7417 . . . . . . . 8 (𝑁 = (β™―β€˜(1st β€˜π΄)) β†’ (0..^𝑁) = (0..^(β™―β€˜(1st β€˜π΄))))
4039raleqdv 3326 . . . . . . 7 (𝑁 = (β™―β€˜(1st β€˜π΄)) β†’ (βˆ€π‘₯ ∈ (0..^𝑁)((1st β€˜π΄)β€˜π‘₯) = ((1st β€˜π΅)β€˜π‘₯) ↔ βˆ€π‘₯ ∈ (0..^(β™―β€˜(1st β€˜π΄)))((1st β€˜π΄)β€˜π‘₯) = ((1st β€˜π΅)β€˜π‘₯)))
4138, 40anbi12d 632 . . . . . 6 (𝑁 = (β™―β€˜(1st β€˜π΄)) β†’ ((𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0..^𝑁)((1st β€˜π΄)β€˜π‘₯) = ((1st β€˜π΅)β€˜π‘₯)) ↔ ((β™―β€˜(1st β€˜π΄)) = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0..^(β™―β€˜(1st β€˜π΄)))((1st β€˜π΄)β€˜π‘₯) = ((1st β€˜π΅)β€˜π‘₯))))
42 oveq2 7417 . . . . . . . 8 (𝑁 = (β™―β€˜(1st β€˜π΄)) β†’ (0...𝑁) = (0...(β™―β€˜(1st β€˜π΄))))
4342raleqdv 3326 . . . . . . 7 (𝑁 = (β™―β€˜(1st β€˜π΄)) β†’ (βˆ€π‘₯ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘₯) = ((2nd β€˜π΅)β€˜π‘₯) ↔ βˆ€π‘₯ ∈ (0...(β™―β€˜(1st β€˜π΄)))((2nd β€˜π΄)β€˜π‘₯) = ((2nd β€˜π΅)β€˜π‘₯)))
4438, 43anbi12d 632 . . . . . 6 (𝑁 = (β™―β€˜(1st β€˜π΄)) β†’ ((𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘₯) = ((2nd β€˜π΅)β€˜π‘₯)) ↔ ((β™―β€˜(1st β€˜π΄)) = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0...(β™―β€˜(1st β€˜π΄)))((2nd β€˜π΄)β€˜π‘₯) = ((2nd β€˜π΅)β€˜π‘₯))))
4541, 44anbi12d 632 . . . . 5 (𝑁 = (β™―β€˜(1st β€˜π΄)) β†’ (((𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0..^𝑁)((1st β€˜π΄)β€˜π‘₯) = ((1st β€˜π΅)β€˜π‘₯)) ∧ (𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘₯) = ((2nd β€˜π΅)β€˜π‘₯))) ↔ (((β™―β€˜(1st β€˜π΄)) = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0..^(β™―β€˜(1st β€˜π΄)))((1st β€˜π΄)β€˜π‘₯) = ((1st β€˜π΅)β€˜π‘₯)) ∧ ((β™―β€˜(1st β€˜π΄)) = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0...(β™―β€˜(1st β€˜π΄)))((2nd β€˜π΄)β€˜π‘₯) = ((2nd β€˜π΅)β€˜π‘₯)))))
4645bibi2d 343 . . . 4 (𝑁 = (β™―β€˜(1st β€˜π΄)) β†’ ((((1st β€˜π΄) = (1st β€˜π΅) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) ↔ ((𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0..^𝑁)((1st β€˜π΄)β€˜π‘₯) = ((1st β€˜π΅)β€˜π‘₯)) ∧ (𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘₯) = ((2nd β€˜π΅)β€˜π‘₯)))) ↔ (((1st β€˜π΄) = (1st β€˜π΅) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) ↔ (((β™―β€˜(1st β€˜π΄)) = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0..^(β™―β€˜(1st β€˜π΄)))((1st β€˜π΄)β€˜π‘₯) = ((1st β€˜π΅)β€˜π‘₯)) ∧ ((β™―β€˜(1st β€˜π΄)) = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0...(β™―β€˜(1st β€˜π΄)))((2nd β€˜π΄)β€˜π‘₯) = ((2nd β€˜π΅)β€˜π‘₯))))))
47463ad2ant3 1136 . . 3 ((𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) β†’ ((((1st β€˜π΄) = (1st β€˜π΅) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) ↔ ((𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0..^𝑁)((1st β€˜π΄)β€˜π‘₯) = ((1st β€˜π΅)β€˜π‘₯)) ∧ (𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘₯) = ((2nd β€˜π΅)β€˜π‘₯)))) ↔ (((1st β€˜π΄) = (1st β€˜π΅) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) ↔ (((β™―β€˜(1st β€˜π΄)) = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0..^(β™―β€˜(1st β€˜π΄)))((1st β€˜π΄)β€˜π‘₯) = ((1st β€˜π΅)β€˜π‘₯)) ∧ ((β™―β€˜(1st β€˜π΄)) = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0...(β™―β€˜(1st β€˜π΄)))((2nd β€˜π΄)β€˜π‘₯) = ((2nd β€˜π΅)β€˜π‘₯))))))
4837, 47mpbird 257 . 2 ((𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) β†’ (((1st β€˜π΄) = (1st β€˜π΅) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) ↔ ((𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0..^𝑁)((1st β€˜π΄)β€˜π‘₯) = ((1st β€˜π΅)β€˜π‘₯)) ∧ (𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘₯) = ((2nd β€˜π΅)β€˜π‘₯)))))
49 1st2ndb 8015 . . . . 5 (𝐴 ∈ (V Γ— V) ↔ 𝐴 = ⟨(1st β€˜π΄), (2nd β€˜π΄)⟩)
5010, 49sylibr 233 . . . 4 (𝐴 ∈ (Walksβ€˜πΊ) β†’ 𝐴 ∈ (V Γ— V))
51 1st2ndb 8015 . . . . 5 (𝐡 ∈ (V Γ— V) ↔ 𝐡 = ⟨(1st β€˜π΅), (2nd β€˜π΅)⟩)
5217, 51sylibr 233 . . . 4 (𝐡 ∈ (Walksβ€˜πΊ) β†’ 𝐡 ∈ (V Γ— V))
53 xpopth 8016 . . . 4 ((𝐴 ∈ (V Γ— V) ∧ 𝐡 ∈ (V Γ— V)) β†’ (((1st β€˜π΄) = (1st β€˜π΅) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) ↔ 𝐴 = 𝐡))
5450, 52, 53syl2an 597 . . 3 ((𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) β†’ (((1st β€˜π΄) = (1st β€˜π΅) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) ↔ 𝐴 = 𝐡))
55543adant3 1133 . 2 ((𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) β†’ (((1st β€˜π΄) = (1st β€˜π΅) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) ↔ 𝐴 = 𝐡))
56 3anass 1096 . . . 4 ((𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0..^𝑁)((1st β€˜π΄)β€˜π‘₯) = ((1st β€˜π΅)β€˜π‘₯) ∧ βˆ€π‘₯ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘₯) = ((2nd β€˜π΅)β€˜π‘₯)) ↔ (𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ (βˆ€π‘₯ ∈ (0..^𝑁)((1st β€˜π΄)β€˜π‘₯) = ((1st β€˜π΅)β€˜π‘₯) ∧ βˆ€π‘₯ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘₯) = ((2nd β€˜π΅)β€˜π‘₯))))
57 anandi 675 . . . 4 ((𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ (βˆ€π‘₯ ∈ (0..^𝑁)((1st β€˜π΄)β€˜π‘₯) = ((1st β€˜π΅)β€˜π‘₯) ∧ βˆ€π‘₯ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘₯) = ((2nd β€˜π΅)β€˜π‘₯))) ↔ ((𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0..^𝑁)((1st β€˜π΄)β€˜π‘₯) = ((1st β€˜π΅)β€˜π‘₯)) ∧ (𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘₯) = ((2nd β€˜π΅)β€˜π‘₯))))
5856, 57bitr2i 276 . . 3 (((𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0..^𝑁)((1st β€˜π΄)β€˜π‘₯) = ((1st β€˜π΅)β€˜π‘₯)) ∧ (𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘₯) = ((2nd β€˜π΅)β€˜π‘₯))) ↔ (𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0..^𝑁)((1st β€˜π΄)β€˜π‘₯) = ((1st β€˜π΅)β€˜π‘₯) ∧ βˆ€π‘₯ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘₯) = ((2nd β€˜π΅)β€˜π‘₯)))
5958a1i 11 . 2 ((𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) β†’ (((𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0..^𝑁)((1st β€˜π΄)β€˜π‘₯) = ((1st β€˜π΅)β€˜π‘₯)) ∧ (𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘₯) = ((2nd β€˜π΅)β€˜π‘₯))) ↔ (𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0..^𝑁)((1st β€˜π΄)β€˜π‘₯) = ((1st β€˜π΅)β€˜π‘₯) ∧ βˆ€π‘₯ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘₯) = ((2nd β€˜π΅)β€˜π‘₯))))
6048, 55, 593bitr3d 309 1 ((𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) β†’ (𝐴 = 𝐡 ↔ (𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘₯ ∈ (0..^𝑁)((1st β€˜π΄)β€˜π‘₯) = ((1st β€˜π΅)β€˜π‘₯) ∧ βˆ€π‘₯ ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘₯) = ((2nd β€˜π΅)β€˜π‘₯))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  Vcvv 3475  βŸ¨cop 4635   class class class wbr 5149   Γ— cxp 5675  dom cdm 5677  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409  1st c1st 7973  2nd c2nd 7974  0cc0 11110  1c1 11111   βˆ’ cmin 11444  β„•0cn0 12472  ...cfz 13484  ..^cfzo 13627  β™―chash 14290  Word cword 14464  Vtxcvtx 28256  iEdgciedg 28257  Walkscwlks 28853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-ifp 1063  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-map 8822  df-pm 8823  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-fzo 13628  df-hash 14291  df-word 14465  df-wlks 28856
This theorem is referenced by:  uspgr2wlkeq  28903
  Copyright terms: Public domain W3C validator