MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpopth Structured version   Visualization version   GIF version

Theorem xpopth 8056
Description: An ordered pair theorem for members of Cartesian products. (Contributed by NM, 20-Jun-2007.)
Assertion
Ref Expression
xpopth ((𝐴 ∈ (𝐶 × 𝐷) ∧ 𝐵 ∈ (𝑅 × 𝑆)) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ 𝐴 = 𝐵))

Proof of Theorem xpopth
StepHypRef Expression
1 1st2nd2 8054 . . 3 (𝐴 ∈ (𝐶 × 𝐷) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
2 1st2nd2 8054 . . 3 (𝐵 ∈ (𝑅 × 𝑆) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
31, 2eqeqan12d 2750 . 2 ((𝐴 ∈ (𝐶 × 𝐷) ∧ 𝐵 ∈ (𝑅 × 𝑆)) → (𝐴 = 𝐵 ↔ ⟨(1st𝐴), (2nd𝐴)⟩ = ⟨(1st𝐵), (2nd𝐵)⟩))
4 fvex 6918 . . 3 (1st𝐴) ∈ V
5 fvex 6918 . . 3 (2nd𝐴) ∈ V
64, 5opth 5480 . 2 (⟨(1st𝐴), (2nd𝐴)⟩ = ⟨(1st𝐵), (2nd𝐵)⟩ ↔ ((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)))
73, 6bitr2di 288 1 ((𝐴 ∈ (𝐶 × 𝐷) ∧ 𝐵 ∈ (𝑅 × 𝑆)) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  cop 4631   × cxp 5682  cfv 6560  1st c1st 8013  2nd c2nd 8014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-iota 6513  df-fun 6562  df-fv 6568  df-1st 8015  df-2nd 8016
This theorem is referenced by:  fseqdom  10067  iundom2g  10581  mdetunilem9  22627  txhaus  23656  fsumvma  27258  wlkeq  29653  disjxpin  32602  poimirlem4  37632  poimirlem13  37641  poimirlem14  37642  poimirlem22  37650  poimirlem26  37654  poimirlem27  37655  rmxypairf1o  42928
  Copyright terms: Public domain W3C validator