MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpopth Structured version   Visualization version   GIF version

Theorem xpopth 7988
Description: An ordered pair theorem for members of Cartesian products. (Contributed by NM, 20-Jun-2007.)
Assertion
Ref Expression
xpopth ((𝐴 ∈ (𝐶 × 𝐷) ∧ 𝐵 ∈ (𝑅 × 𝑆)) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ 𝐴 = 𝐵))

Proof of Theorem xpopth
StepHypRef Expression
1 1st2nd2 7986 . . 3 (𝐴 ∈ (𝐶 × 𝐷) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
2 1st2nd2 7986 . . 3 (𝐵 ∈ (𝑅 × 𝑆) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
31, 2eqeqan12d 2743 . 2 ((𝐴 ∈ (𝐶 × 𝐷) ∧ 𝐵 ∈ (𝑅 × 𝑆)) → (𝐴 = 𝐵 ↔ ⟨(1st𝐴), (2nd𝐴)⟩ = ⟨(1st𝐵), (2nd𝐵)⟩))
4 fvex 6853 . . 3 (1st𝐴) ∈ V
5 fvex 6853 . . 3 (2nd𝐴) ∈ V
64, 5opth 5431 . 2 (⟨(1st𝐴), (2nd𝐴)⟩ = ⟨(1st𝐵), (2nd𝐵)⟩ ↔ ((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)))
73, 6bitr2di 288 1 ((𝐴 ∈ (𝐶 × 𝐷) ∧ 𝐵 ∈ (𝑅 × 𝑆)) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cop 4591   × cxp 5629  cfv 6499  1st c1st 7945  2nd c2nd 7946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fv 6507  df-1st 7947  df-2nd 7948
This theorem is referenced by:  fseqdom  9955  iundom2g  10469  mdetunilem9  22540  txhaus  23567  fsumvma  27157  wlkeq  29614  disjxpin  32567  poimirlem4  37611  poimirlem13  37620  poimirlem14  37621  poimirlem22  37629  poimirlem26  37633  poimirlem27  37634  rmxypairf1o  42893
  Copyright terms: Public domain W3C validator