MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpopth Structured version   Visualization version   GIF version

Theorem xpopth 7962
Description: An ordered pair theorem for members of Cartesian products. (Contributed by NM, 20-Jun-2007.)
Assertion
Ref Expression
xpopth ((𝐴 ∈ (𝐶 × 𝐷) ∧ 𝐵 ∈ (𝑅 × 𝑆)) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ 𝐴 = 𝐵))

Proof of Theorem xpopth
StepHypRef Expression
1 1st2nd2 7960 . . 3 (𝐴 ∈ (𝐶 × 𝐷) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
2 1st2nd2 7960 . . 3 (𝐵 ∈ (𝑅 × 𝑆) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
31, 2eqeqan12d 2745 . 2 ((𝐴 ∈ (𝐶 × 𝐷) ∧ 𝐵 ∈ (𝑅 × 𝑆)) → (𝐴 = 𝐵 ↔ ⟨(1st𝐴), (2nd𝐴)⟩ = ⟨(1st𝐵), (2nd𝐵)⟩))
4 fvex 6835 . . 3 (1st𝐴) ∈ V
5 fvex 6835 . . 3 (2nd𝐴) ∈ V
64, 5opth 5414 . 2 (⟨(1st𝐴), (2nd𝐴)⟩ = ⟨(1st𝐵), (2nd𝐵)⟩ ↔ ((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)))
73, 6bitr2di 288 1 ((𝐴 ∈ (𝐶 × 𝐷) ∧ 𝐵 ∈ (𝑅 × 𝑆)) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  cop 4579   × cxp 5612  cfv 6481  1st c1st 7919  2nd c2nd 7920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fv 6489  df-1st 7921  df-2nd 7922
This theorem is referenced by:  fseqdom  9917  iundom2g  10431  mdetunilem9  22535  txhaus  23562  fsumvma  27151  wlkeq  29612  disjxpin  32568  poimirlem4  37674  poimirlem13  37683  poimirlem14  37684  poimirlem22  37692  poimirlem26  37696  poimirlem27  37697  rmxypairf1o  43014
  Copyright terms: Public domain W3C validator