![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpopth | Structured version Visualization version GIF version |
Description: An ordered pair theorem for members of Cartesian products. (Contributed by NM, 20-Jun-2007.) |
Ref | Expression |
---|---|
xpopth | ⊢ ((𝐴 ∈ (𝐶 × 𝐷) ∧ 𝐵 ∈ (𝑅 × 𝑆)) → (((1st ‘𝐴) = (1st ‘𝐵) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)) ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1st2nd2 7444 | . . 3 ⊢ (𝐴 ∈ (𝐶 × 𝐷) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
2 | 1st2nd2 7444 | . . 3 ⊢ (𝐵 ∈ (𝑅 × 𝑆) → 𝐵 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉) | |
3 | 1, 2 | eqeqan12d 2819 | . 2 ⊢ ((𝐴 ∈ (𝐶 × 𝐷) ∧ 𝐵 ∈ (𝑅 × 𝑆)) → (𝐴 = 𝐵 ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉)) |
4 | fvex 6428 | . . 3 ⊢ (1st ‘𝐴) ∈ V | |
5 | fvex 6428 | . . 3 ⊢ (2nd ‘𝐴) ∈ V | |
6 | 4, 5 | opth 5139 | . 2 ⊢ (〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ↔ ((1st ‘𝐴) = (1st ‘𝐵) ∧ (2nd ‘𝐴) = (2nd ‘𝐵))) |
7 | 3, 6 | syl6rbb 280 | 1 ⊢ ((𝐴 ∈ (𝐶 × 𝐷) ∧ 𝐵 ∈ (𝑅 × 𝑆)) → (((1st ‘𝐴) = (1st ‘𝐵) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)) ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 〈cop 4378 × cxp 5314 ‘cfv 6105 1st c1st 7403 2nd c2nd 7404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2379 ax-ext 2781 ax-sep 4979 ax-nul 4987 ax-pow 5039 ax-pr 5101 ax-un 7187 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2593 df-eu 2611 df-clab 2790 df-cleq 2796 df-clel 2799 df-nfc 2934 df-ral 3098 df-rex 3099 df-rab 3102 df-v 3391 df-sbc 3638 df-dif 3776 df-un 3778 df-in 3780 df-ss 3787 df-nul 4120 df-if 4282 df-sn 4373 df-pr 4375 df-op 4379 df-uni 4633 df-br 4848 df-opab 4910 df-mpt 4927 df-id 5224 df-xp 5322 df-rel 5323 df-cnv 5324 df-co 5325 df-dm 5326 df-rn 5327 df-iota 6068 df-fun 6107 df-fv 6113 df-1st 7405 df-2nd 7406 |
This theorem is referenced by: fseqdom 9139 iundom2g 9654 mdetunilem9 20756 txhaus 21783 fsumvma 25294 wlkeq 26887 disjxpin 29922 poimirlem4 33906 poimirlem13 33915 poimirlem14 33916 poimirlem22 33924 poimirlem26 33928 poimirlem27 33929 rmxypairf1o 38265 |
Copyright terms: Public domain | W3C validator |