MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkcpr Structured version   Visualization version   GIF version

Theorem wlkcpr 29153
Description: A walk as class with two components. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 2-Jan-2021.)
Assertion
Ref Expression
wlkcpr (π‘Š ∈ (Walksβ€˜πΊ) ↔ (1st β€˜π‘Š)(Walksβ€˜πΊ)(2nd β€˜π‘Š))

Proof of Theorem wlkcpr
StepHypRef Expression
1 wlkop 29152 . 2 (π‘Š ∈ (Walksβ€˜πΊ) β†’ π‘Š = ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩)
2 wlkvv 29151 . . 3 ((1st β€˜π‘Š)(Walksβ€˜πΊ)(2nd β€˜π‘Š) β†’ π‘Š ∈ (V Γ— V))
3 1st2ndb 8017 . . 3 (π‘Š ∈ (V Γ— V) ↔ π‘Š = ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩)
42, 3sylib 217 . 2 ((1st β€˜π‘Š)(Walksβ€˜πΊ)(2nd β€˜π‘Š) β†’ π‘Š = ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩)
5 eleq1 2819 . . 3 (π‘Š = ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩ β†’ (π‘Š ∈ (Walksβ€˜πΊ) ↔ ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩ ∈ (Walksβ€˜πΊ)))
6 df-br 5148 . . 3 ((1st β€˜π‘Š)(Walksβ€˜πΊ)(2nd β€˜π‘Š) ↔ ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩ ∈ (Walksβ€˜πΊ))
75, 6bitr4di 288 . 2 (π‘Š = ⟨(1st β€˜π‘Š), (2nd β€˜π‘Š)⟩ β†’ (π‘Š ∈ (Walksβ€˜πΊ) ↔ (1st β€˜π‘Š)(Walksβ€˜πΊ)(2nd β€˜π‘Š)))
81, 4, 7pm5.21nii 377 1 (π‘Š ∈ (Walksβ€˜πΊ) ↔ (1st β€˜π‘Š)(Walksβ€˜πΊ)(2nd β€˜π‘Š))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   = wceq 1539   ∈ wcel 2104  Vcvv 3472  βŸ¨cop 4633   class class class wbr 5147   Γ— cxp 5673  β€˜cfv 6542  1st c1st 7975  2nd c2nd 7976  Walkscwlks 29120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13489  df-fzo 13632  df-hash 14295  df-word 14469  df-wlks 29123
This theorem is referenced by:  wlk2f  29154  wlkcompim  29156  upgrwlkcompim  29167  uspgr2wlkeqi  29172  wlkv0  29175  g0wlk0  29176  wlkswwlksf1o  29400  wlknewwlksn  29408  wlknwwlksnbij  29409  clwlkclwwlkf1  29530  clwlknf1oclwwlknlem1  29601  clwlknf1oclwwlkn  29604  clwwlknonclwlknonf1o  29882  dlwwlknondlwlknonf1olem1  29884
  Copyright terms: Public domain W3C validator