Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsovcnvd Structured version   Visualization version   GIF version

Theorem fsovcnvd 43985
Description: The value of the converse (𝐴𝑂𝐵) is (𝐵𝑂𝐴), where 𝑂 is the operator which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, gives a family of functions that include their own inverse. (Contributed by RP, 27-Apr-2021.)
Hypotheses
Ref Expression
fsovd.fs 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))
fsovd.a (𝜑𝐴𝑉)
fsovd.b (𝜑𝐵𝑊)
fsovfvd.g 𝐺 = (𝐴𝑂𝐵)
fsovcnvlem.h 𝐻 = (𝐵𝑂𝐴)
Assertion
Ref Expression
fsovcnvd (𝜑𝐺 = 𝐻)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑓,𝑥,𝑦   𝐵,𝑎,𝑏,𝑓,𝑥,𝑦   𝜑,𝑎,𝑏,𝑓,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐺(𝑥,𝑦,𝑓,𝑎,𝑏)   𝐻(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑂(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑊(𝑥,𝑦,𝑓,𝑎,𝑏)

Proof of Theorem fsovcnvd
StepHypRef Expression
1 fsovd.fs . . 3 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))
2 fsovd.a . . 3 (𝜑𝐴𝑉)
3 fsovd.b . . 3 (𝜑𝐵𝑊)
4 fsovfvd.g . . 3 𝐺 = (𝐴𝑂𝐵)
51, 2, 3, 4fsovfd 43983 . 2 (𝜑𝐺:(𝒫 𝐵m 𝐴)⟶(𝒫 𝐴m 𝐵))
6 fsovcnvlem.h . . 3 𝐻 = (𝐵𝑂𝐴)
71, 3, 2, 6fsovfd 43983 . 2 (𝜑𝐻:(𝒫 𝐴m 𝐵)⟶(𝒫 𝐵m 𝐴))
81, 2, 3, 4, 6fsovcnvlem 43984 . 2 (𝜑 → (𝐻𝐺) = ( I ↾ (𝒫 𝐵m 𝐴)))
91, 3, 2, 6, 4fsovcnvlem 43984 . 2 (𝜑 → (𝐺𝐻) = ( I ↾ (𝒫 𝐴m 𝐵)))
105, 7, 8, 92fcoidinvd 7287 1 (𝜑𝐺 = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  {crab 3415  Vcvv 3459  𝒫 cpw 4575  cmpt 5201  ccnv 5653  cfv 6530  (class class class)co 7403  cmpo 7405  m cmap 8838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-map 8840
This theorem is referenced by:  fsovcnvfvd  43986  fsovf1od  43987  ntrneicnv  44049  clsneicnv  44076  neicvgnvo  44086  neicvgel1  44090
  Copyright terms: Public domain W3C validator