![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsovcnvd | Structured version Visualization version GIF version |
Description: The value of the converse (𝐴𝑂𝐵) is (𝐵𝑂𝐴), where 𝑂 is the operator which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, gives a family of functions that include their own inverse. (Contributed by RP, 27-Apr-2021.) |
Ref | Expression |
---|---|
fsovd.fs | ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑𝑚 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
fsovd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
fsovd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
fsovfvd.g | ⊢ 𝐺 = (𝐴𝑂𝐵) |
fsovcnvlem.h | ⊢ 𝐻 = (𝐵𝑂𝐴) |
Ref | Expression |
---|---|
fsovcnvd | ⊢ (𝜑 → ◡𝐺 = 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsovd.fs | . . 3 ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑𝑚 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) | |
2 | fsovd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | fsovd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
4 | fsovfvd.g | . . 3 ⊢ 𝐺 = (𝐴𝑂𝐵) | |
5 | 1, 2, 3, 4 | fsovfd 39088 | . 2 ⊢ (𝜑 → 𝐺:(𝒫 𝐵 ↑𝑚 𝐴)⟶(𝒫 𝐴 ↑𝑚 𝐵)) |
6 | fsovcnvlem.h | . . 3 ⊢ 𝐻 = (𝐵𝑂𝐴) | |
7 | 1, 3, 2, 6 | fsovfd 39088 | . 2 ⊢ (𝜑 → 𝐻:(𝒫 𝐴 ↑𝑚 𝐵)⟶(𝒫 𝐵 ↑𝑚 𝐴)) |
8 | 1, 2, 3, 4, 6 | fsovcnvlem 39089 | . 2 ⊢ (𝜑 → (𝐻 ∘ 𝐺) = ( I ↾ (𝒫 𝐵 ↑𝑚 𝐴))) |
9 | 1, 3, 2, 6, 4 | fsovcnvlem 39089 | . 2 ⊢ (𝜑 → (𝐺 ∘ 𝐻) = ( I ↾ (𝒫 𝐴 ↑𝑚 𝐵))) |
10 | 5, 7, 8, 9 | 2fcoidinvd 6778 | 1 ⊢ (𝜑 → ◡𝐺 = 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 {crab 3093 Vcvv 3385 𝒫 cpw 4349 ↦ cmpt 4922 ◡ccnv 5311 ‘cfv 6101 (class class class)co 6878 ↦ cmpt2 6880 ↑𝑚 cmap 8095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-1st 7401 df-2nd 7402 df-map 8097 |
This theorem is referenced by: fsovcnvfvd 39091 fsovf1od 39092 ntrneicnv 39158 clsneicnv 39185 neicvgnvo 39195 neicvgel1 39199 |
Copyright terms: Public domain | W3C validator |