| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fsovcnvd | Structured version Visualization version GIF version | ||
| Description: The value of the converse (𝐴𝑂𝐵) is (𝐵𝑂𝐴), where 𝑂 is the operator which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, gives a family of functions that include their own inverse. (Contributed by RP, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| fsovd.fs | ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
| fsovd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| fsovd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| fsovfvd.g | ⊢ 𝐺 = (𝐴𝑂𝐵) |
| fsovcnvlem.h | ⊢ 𝐻 = (𝐵𝑂𝐴) |
| Ref | Expression |
|---|---|
| fsovcnvd | ⊢ (𝜑 → ◡𝐺 = 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsovd.fs | . . 3 ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) | |
| 2 | fsovd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | fsovd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 4 | fsovfvd.g | . . 3 ⊢ 𝐺 = (𝐴𝑂𝐵) | |
| 5 | 1, 2, 3, 4 | fsovfd 43983 | . 2 ⊢ (𝜑 → 𝐺:(𝒫 𝐵 ↑m 𝐴)⟶(𝒫 𝐴 ↑m 𝐵)) |
| 6 | fsovcnvlem.h | . . 3 ⊢ 𝐻 = (𝐵𝑂𝐴) | |
| 7 | 1, 3, 2, 6 | fsovfd 43983 | . 2 ⊢ (𝜑 → 𝐻:(𝒫 𝐴 ↑m 𝐵)⟶(𝒫 𝐵 ↑m 𝐴)) |
| 8 | 1, 2, 3, 4, 6 | fsovcnvlem 43984 | . 2 ⊢ (𝜑 → (𝐻 ∘ 𝐺) = ( I ↾ (𝒫 𝐵 ↑m 𝐴))) |
| 9 | 1, 3, 2, 6, 4 | fsovcnvlem 43984 | . 2 ⊢ (𝜑 → (𝐺 ∘ 𝐻) = ( I ↾ (𝒫 𝐴 ↑m 𝐵))) |
| 10 | 5, 7, 8, 9 | 2fcoidinvd 7287 | 1 ⊢ (𝜑 → ◡𝐺 = 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {crab 3415 Vcvv 3459 𝒫 cpw 4575 ↦ cmpt 5201 ◡ccnv 5653 ‘cfv 6530 (class class class)co 7403 ∈ cmpo 7405 ↑m cmap 8838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 df-map 8840 |
| This theorem is referenced by: fsovcnvfvd 43986 fsovf1od 43987 ntrneicnv 44049 clsneicnv 44076 neicvgnvo 44086 neicvgel1 44090 |
| Copyright terms: Public domain | W3C validator |